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CHAPTER 4 
 

PEAK FLOW FOR GAGED SITES 
 

The estimation of peak discharges of various recurrence intervals is one of the most common 
problems faced by engineers when designing for highway drainage structures. The problem can 
be divided into two categories: 
 
• Gaged sites: the site is at or near a gaging station, and the stream flow record is fairly 

complete and of sufficient length to be used to provide estimates of peak discharges. 
 

• Ungaged sites: the site is not near a gaging station or the stream flow record is not 
adequate for analysis. 

 
Sites that are located at or near a gaging station, but that have incomplete or very short records 
represent special cases. For these situations, peak discharges for selected frequencies are 
estimated either by supplementing or transposing data and treating them as gaged sites; or by 
using regression equations or other synthetic methods applicable to ungaged sites. 
 
The USGS Interagency Advisory Committee on Water Data Bulletin 17B (1982) is a guide that 
"describes the data and procedures for computing flood flow frequency curves where systematic 
stream gaging records of sufficient length (at least 10 years) to warrant statistical analysis are 
available as the basis for determination."  The guide was intended for use in analyzing records 
of annual flood peak discharges, including both systematic records and historic data. The 
document iscommonly referred to simply as “Bulletin 17B”. 
 
Methods for making flood peak estimates can be separated on the basis of the gaged vs. 
ungaged classification. If gaged data are available at or near the site of interest, the statistical 
analysis of the gaged data is generally the preferred method of analysis. Where such data are 
not available, estimates of flood peaks can be made using either regional regression equations 
or one of the generally available empirical equations. If the assumptions that underlie the 
regional regression equations are valid for the site of interest, their use is preferred to the use of 
empirical equations. The USGS has developed and published regional regression equations for 
estimating the magnitude and frequency of flood discharges for all states and the 
Commonwealth of Puerto Rico (Jennings, et al., 1994). Empirical approaches include the 
rational equation and the SCS graphical peak discharge equation. 
 
This chapter is concerned primarily with the statistical analysis of gaged data. Appropriate 
solution techniques are presented and the assumptions and limitations of each are discussed. 
Regional regression equations and the empirical equations applicable to ungaged sites are 
discussed in Chapter 5. 

4.1 RECORD LENGTH REQUIREMENTS 
Analysis of gaged data permits an estimate of the peak discharge in terms of its probability or 
frequency of exceedence at a given site. This is done by statistical methods provided sufficient 
data are available at the site to permit a meaningful statistical analysis to be made. Bulletin 17B 
(1982) suggests that at least 10 years of record are necessary to warrant a statistical analysis 
by methods presented therein.  
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At some sites, historical data may exist on large floods prior to or after the period over which 
stream flow data were collected. This information can be collected from inquiries, newspaper 
accounts, and field surveys for highwater marks. Whenever possible, these data should be 
compiled and documented to improve frequency estimates. 
 

4.2 STATISTICAL CHARACTER OF FLOODS 
The concepts of populations and samples are fundamental to statistical analysis. A population 
that may be either finite or infinite is defined as the entire collection of all possible occurrences 
of a given quantity. An example of a finite population is the number of possible outcomes of the 
throw of the dice, a fixed number. An example of an infinite population is the number of different 
peak annual discharges possible for a given stream.  
 
A sample is defined as part of a population. In all practical instances, hydrologic data are 
analyzed as a sample of an infinite population, and it is usually assumed that the sample is 
representative of its parent population. By representative, it is meant that the characteristics of 
the sample, such as its measures of central tendency and its frequency distribution, are the 
same as that of the parent population.  
 
An entire branch of statistics deals with the inference of population characteristics and 
parameters from the characteristics of samples. The techniques of inferential statistics, which is 
the name of this branch of statistics, are very useful in the analysis of hydrologic data because 
samples are used to predict the characteristics of the populations. Not only will the techniques 
of inferential statistics allow estimates of the characteristics of the population from samples, but 
they also permit the evaluation of the reliability or accuracy of the estimates. Some of the 
methods available for the analysis of data are discussed below and illustrated with actual peak 
flow data. 
 
Before analyzing data, it is necessary that they be arranged in a systematic manner. Data can 
be arranged in a number of ways, depending on the specific characteristics that are to be 
examined. An arrangement of data by a specific characteristic is called a distribution or a series. 
Some common types of data groupings are the following: magnitude; time of occurrence; and 
geographic location. 

4.2.1 Analysis of Annual and Partial-Duration Series 
The most common arrangement of hydrologic data is by magnitude of the annual peak 
discharge. This arrangement is called an annual series. As an example of an annual series, 29 
annual peak discharges for Mono Creek near Vermilion Valley, California, are listed in Table 
4.1. 
 
Another method used in flood data arrangement is the partial-duration series. This procedure 
uses all peak flows above some base value. For example, the partial-duration series may 
consider all flows above the discharge of approximately bankfull stage. The USGS sets the 
base for the partial-duration series so that approximately three peak flows, on average, exceed 
the base each year. Over a 20-year period of record, this may yield 60 or more floods compared 
to 20 floods in the annual series. The record contains both annual peaks and partial-duration 
peaks for unregulated watersheds. Figure 4.1 illustrates a portion of the record for Mono Creek 
containing both the highest annual floods and other large secondary floods. 
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Table 4.1. Analysis of Annual Flood Series, Mono Creek, CA 
 
Basin:  Mono Creek near Vermilion Valley, CA, South Fork of San Joaquin River Basin 

Location: Latitude 37o22'00", Longitude 118o 59' 20", 1.6 km (1 mi) downstream from lower 
end of Vermilion Valley and 9.6 km (6.0 mi) downstream from North Fork 

 
Area:  238.3 km2  (92  mi 2 ) 

Remarks: diversion or regulation 

Record: 1922-1950, 29 years (no data adjustments) 

 
Year Annual Maximum 

(m3/s) 
Smoothed  

Series (m3/s) 
Annual Maximum 

(ft3/s) 
Smoothed 

Series (ft3/s)  
1922 

 
39.4 

 
- 1,390 

 
-  

1923 
 

26.6 
 

- 940 
 

-  
1924 

 
13.8 

 
27.8 488 982  

1925 
 

30.0 
 

28.0 1,060 988  
1926 

 
29.2 

 
28.9 1,030 1,022  

1927 
 

40.2 30.4 1,420 1,074  
1928 

 
31.4 29.2 1,110 1,031  

1929 
 

21.2 26.4 750 931  
1930 

 
24.0 26.4 848 931  

1931 
 

14.9 27.7 525 979  
1932 

 
40.2 25.8 1,420 909  

1933 
 

38.2 27.9 1,350 986  
1934 

 
11.4 30.9 404 1,093  

1935 
 

34.8 29.8 1,230 1,051  
1936 

 
30.0 32.1 1,060 1,133  

1937 
 

34.3 32.8 1,210 1,160  
1938 

 
49.8 32.3 1,760 1,140  

1939 
 

15.3 34.3 540 1,212  
1940 

 
32.0 34.1 1,130 1,204  

1941 
 

40.2 32.3 1,420 1,140  
1942 

 
33.1 34.1 1,170 1,203  

1943 
 

40.8 35.4 1,440 1,251  
1944 

 
24.2 32.5 855 1,149  

1945 
 

38.8 31.5 1,370 1,113  
1946 

 
25.8 28.1 910 992  

1947 
 

28.0 28.4 988 1,004  
1948 

 
23.7 26.9 838 950  

1949 
 

25.9 - 916 
 

-  
1950 

 
31.2 - 1,100 

 
- 
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Partial-duration series are used primarily in defining annual flood damages when more than one 
event that causes flood damages can occur in any year. If the base for the partial-duration 
series conforms approximately to bankfull stage, the peaks above the base are generally flood-
damaging events. The partial-duration series avoids a problem with the annual-maximum 
series, specifically that annual-maximum series analyses ignore floods that are not the highest 
flood of that year even though they are larger than the highest floods of other years. While 
partial-duration series produce larger sample sizes than annual maximum series, they require a 
criterion that defines peak independence. Two large peaks that are several days apart and 
separated by a period of lower flows may be part of the same hydrometeorological event and, 
thus, they may not be independent events. Independence of events is a basic assumption that 
underlies the method of analysis. 
 
If these floods are ordered in the same manner as in an annual series, they can be plotted as 
illustrated in Figure 4.2. By separating out the peak annual flows, the two series can be 
compared as also shown in Figure 4.2, where it is seen that, for a given rank (from largest to 
smallest) order, m, the partial-duration series yields a higher peak flow than the annual series. 
The difference is greatest at the lower flows and becomes very small at the higher peak 
discharges. If the recurrence interval of these peak flows is computed as the rank order divided 
by the number of events (not years), the recurrence interval of the partial-duration series can be 
computed in the terms of the annual series by the equation:  
 

 
)1  T(ln  T ln

1 = T
AA

B −
 (4.1) 

 
where TB and TA are the recurrence intervals of the partial-duration series and annual series, 
respectively. Equation 4.1 can also be plotted as shown in Figure 4.3. 
 
This curve shows that the maximum deviation between the two series occurs for flows with 
recurrence intervals less than 10 years. At this interval, the deviation is about 5 percent and, for 
the 5-year discharge, the deviation is about 10 percent. For the less frequent floods, the two 
series approach one another (see Table 4.2). 
 
 
When using the partial-duration series, one must be especially careful that the selected flood 
peaks are independent events. This is a tough practical problem since secondary flood peaks 
may occur during the same flood as a result of high antecedent moisture conditions. In this 
case, the secondary flood is not an independent event. One should also be cautious with the 
choice of the lower limit or base flood since it directly affects the computation of the properties of 
the distribution (i.e., the mean, the variance and standard deviation, and the coefficient of skew), 
all of which may change the peak flow determinations. For this reason, it is probably best to 
utilize the annual series and convert the results to a partial-duration series through use of 
Equation 4.1. For the less frequent events (greater than 5 to 10 years), the annual series is 
entirely appropriate and no other analysis is required. 

Gilbert Gedeon
Pencil
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Figure 4.1. Peak annual and other large secondary flows, Mono Creek, CA 
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Figure 4.2. Annual and partial-duration series 
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Table 4.2. Comparison of Annual and Partial-Duration Curves 

Number of Years Flow is Exceeded per Hundred Years 
(from Beard, 1962) 

Annual-event Partial-duration 
1 1.00 
2 2.02 
5 5.10 
10 10.50 
20 22.30 
30 35.60 
40 51.00 
50 69.30 
60 91.70 
63 100.00 
70 120.00 
80 161.00 
90 230.00 
95 300.00 

 

4.2.2 Detection of Nonhomogeneity in the Annual Flood Series 
Frequency analysis is a method based on order-theory statistics. Basic assumptions that should 
be evaluated prior to performing the analysis are: 
The data are independent and identically distributed random events. 
1. The data are from the sample population. 
2. The data are assumed to be representative of the population. 
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Figure 4.3. Relation between annual and partial-duration series 
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3. The process generating these events is stationary with respect to time. 
 
Obviously, using a frequency analysis assumes that no measurement or computational errors 
were made. When analyzing a set of data, the validity of the four assumptions can be 
statistically evaluated using tests such as the following: 

 
• Runs test for randomness 
• Mann-Whitney U test for homogeneity 
• Kendall test for trend 
• Spearman rank-order correlation coefficient for trend 
 
The Kendall test is described by Hirsch, et al. (1982). The other tests are described in the British 
Flood Studies Report (National Environmental Research Council, 1975) and in the 
documentation for the Canadian flood-frequency program (Pilon and Harvey, 1992). A work 
group for revising USGS Bulletin 17B (1982) is currently writing a report that documents and 
illustrates these tests. 
 
Another way to arrange data is according to their time of occurrence. Such an arrangement is 
called a time series. As an example of a time series, the same 29 years of data presented in 
Table 4.1 are arranged according to year of occurrence rather than magnitude and plotted in 
Figure 4.4. 
 
This time series shows the temporal variation of the data and is an important step in data 
analysis. The analysis of time variations is called trend analysis and there are several methods 
that are used in trend analysis. The two most commonly used in hydrologic analysis are the 
moving-average method and the methods of curve fitting. A major difference between the 
moving-average method and curve fitting is that the moving-average method does not provide a 
mathematical equation for making estimates. It only provides a tabular or graphical summary 
from which a trend can be subjectively assessed. Curve fitting can provide an equation that can 
be used to make estimates. The various methods of curve fitting are discussed in more detail by 
Sanders (1980) and McCuen (1993).  
 
The method of moving averages is presented here. Moving-average filtering reduces the effects 
of random variations. The method is based on the premise that the systematic component of a 
time series exhibits autocorrelation (i.e., correlation between nearby measurements) while the 
random fluctuations are not autocorrelated. Therefore, the averaging of adjacent measurements 
will eliminate the random fluctuations, with the result converging to a qualitative description of 
any systematic trend that is present in the data. 
 
In general, the moving-average computation uses a weighted average of adjacent observations 
to produce a new time series that consists of the systematic trend. Given a time series Yi, the 
filtered series iŶ  is derived by:  

 k)-(n2),...,+(k1),+(k = i for    Yw  = Ŷ 1-j+k-ij

m

1=j
i ∑  (4.2)  

where,  
 
 m = the number of observations used to compute the filtered value (i.e., the smoothing 

interval) 
 wj = the weight applied to value j of the series Y. 
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The smoothing interval should be an odd integer, with 0.5 (m-1) values of Y before observation i 
and 0.5 (m-1) values of Y after observation i is used to estimate the smoothed value Ŷ . A total 
of 2*k observations are lost; that is, while the length of the measured time series equals n, the 
smoothed series,Ŷ , has (n - 2k) values. The simplest weighting scheme would be the 
arithmetic mean (i.e., wj = 1/m). Other weighting schemes give the greatest weight to the central 
point in the interval, with successively smaller weights given to points farther removed from the 
central point. 
 
Moving-average filtering has several disadvantages. First, as described above, the approach 
loses 2*k observations, which may be a very limiting disadvantage for short record lengths. 
Second, a moving-average filter is not itself a mathematical representation, and thus forecasting 
with the filter is not possible; a structural form must still be calibrated to forecast any systematic 
trend identified by the filtering. Third, the choice of the smoothing interval is not always obvious, 
and it is often necessary to try several values in order to provide the best separation of 
systematic and random variation. Fourth, if the smoothing interval is not properly selected, it is 
possible to eliminate some of the systematic variation with the random variation. 
 
A moving-average filter can be used to identify the presence of either a trend or a cycle. The 
smoothed series will enable the form of the trend or the period of the cycle to be estimated. A 
model can be developed to represent the systematic component and the model coefficients 
evaluated with a numerical fitting method. 
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Figure 4.4. Measured and smoothed flood series for Mono Creek, CA 
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Trend analysis plays an important role in evaluating the effects of changing land use and other 
time dependent parameters. Often through the use of trend analysis, future events can be 
estimated more rationally and past events are better understood.  
 
Two examples will be used to demonstrate the use of moving-average smoothing. In both 
cases, a 5-year smoothing interval was used. Three-year intervals were not sufficient to clearly 
show the trend, and intervals longer than 5 years did not improve the ability to interpret the 
results. 

 
Example 4.1. Table 4.1 contains the 29-year annual flood series for Mono Creek, CA; the series 
is shown in Figure 4.4. The calculated smoothed series is also listed in Table 4.1 and shown in 
Figure 4.4. The trend in the smoothed series is not hydrologically significant, which suggests 
that rainfall and watershed conditions have not caused a systematic trend during the period of 
record. 
 
Example 4.2. Table 4.3 contains the 24-year annual flood series and smoothed series for Pond 
Creek, KY; the two series are shown in Figure 4.5. The Pond Creek watershed became 
urbanized in the late 1950s. Thus, the flood peaks tended to increase. This is evident from the 
obvious trend in the smoothed series during the period of urbanization. It appears that 
urbanization caused at least a doubling of flood magnitudes. While the smoothing does not 
provide a model of the effects of urbanization, the series does suggest the character of the 
effects of urbanization. Other possible causes of the trend should be investigated to provide 
some assurance that the urban development was the cause.  
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Figure 4.5. Measured and smoothed series for annual peak flows, Pond Creek, KY 
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Table 4.3. Computation of 5-year Moving Average of Peak Flows, Pond Creek, KY 
 

Year Annual 
Maximum 

  (m3/s)   

Smoothed 
Series 
  (m3/s)   

Annual 
Maximum 

(ft3/s) 

Smoothed 
Series  
(ft3/s) 

1945 56.7 - 2,002 - 
1946 49.3 - 1,741 - 
1947 41.4 49.8 1,462 1,760 
1948 58.4 47.5 2,062 1,678 
1949 43.4 47.2 1,532 1,668 
1950 45.1 47.0 1,593 1,660 
1951 47.9 42.8 1,691 1,513 
1952 40.2 37.6 1,419 1,328 
1953 37.7 36.4 1,331 1,286 
1954 17.2 36.3    607 1,280 
1955 39.1 41.2 1,381 1,454 
1956 47.0 48.3 1,660 1,706 
1957 64.9 63.4 2,292 2,237 
1958 73.4 69.7 2,592 2,460 
1959 92.4 77.7 3,263 2,744 
1960 70.6 79.0 2,493 2,790 
1961 87.3 83.4 3,083 2,944 
1962 71.4 110.4 2,521 3,897 
1963 95.2 120.7 3,362 4,261 
1964 227.3 128.0 8,026 4,520 
1965 122.1 132.0 4,311 4,661 
1966 124.1 137.4 4,382 4,853 
1967 91.3 - 3,224 - 
1968 122.4 - 4,322 - 

 

4.2.3 Arrangement by Geographic Location 
The primary purpose of arranging flood data by geographic area is to develop a database for 
the analysis of peak flows at sites that are either ungaged or have insufficient data. Classically, 
flood data are grouped for basins with similar meteorologic and physiographic characteristics. 
Meteorologically, this means that floods are caused by storms with similar type rainfall 
intensities, durations, distributions, shapes, travel directions, and other climatic conditions. 
Similarity of physiographic features means that basin slopes, shapes, stream density, ground 
cover, geology, and hydrologic abstractions are similar among watersheds in the same region. 
 
Some of these parameters are described quantitatively in a variety of ways while others are 
totally subjective. There can be considerable variation in estimates of watershed similarity in a 
geographical area. From a quantitative standpoint, it is preferable to consider the properties that 
describe the distribution of floods from different watersheds. These properties, which are 
described more fully in later parts of this section, include the variance, standard deviation, and 
coefficient of skew. Other methods can be used to test for hydrologic homogeneity such as the 
runoff per unit of drainage area, the ratio of various frequency floods to average floods, the 
standard error of estimate, and the residuals of regression analyses. The latter techniques are 
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typical of those used to establish geographic areas for regional regression equations and other 
regional procedures for peak flow estimates. 

4.2.4 Probability Concepts 
The statistical analysis of repeated observations of an event (e.g., observations of peak annual 
flows) is based on the laws of probability. The probability of exceedence of a single peak flow, 
QA, is approximated by the relative number of exceedences of QA after a long series of 
observations, i.e.,  
 

 
large)(if  nsobservatio of  No.

magnitudefloodsomeofsexceedence of No. = 
n
n = )Q(P 1

Ar  (4.3) 

 
where, 
 n1 = the frequency 
 n1/n = relative frequency of QA. 
 
Most people have an intuitive grasp of the concept of probability. They know that if a coin is 
tossed, there is an equal probability that a head or a tail will result. They know this because 
there are only two possible outcomes and that each is equally likely. Again, relying on past 
experience or intuition, when a fair die is tossed, there are six equally likely outcomes, any of 
the numbers 1, 2, 3, 4, 5, or 6. Each has a probability of occurrence of 1/6. So the chances that 
the number 3 will result from a single throw is 1 out of 6. This is fairly straightforward because all 
of the possible outcomes are known beforehand and the probabilities can be readily quantified. 
 
On the other hand, the probability of a nonexceedence (or failure) of an event such as peak 
flow, QA, is given by: 

 )Q(P1 = 
n
n1 = 

n
nn = )Q (notP Ar

11
Ar −−

−
 (4.4) 

 
Combining Equations 4.3 and 4.4 yields: 
 
 1 = )Q (notP)Q(P ArAr +  (4.5) 
 
or the probability of an event being exceeded is between 0 and 1 (i.e., 0 ≤ Pr(QA) ≤ 1). If an 
event is certain to occur, it has a probability of 1, and if it cannot occur at all, it has a probability 
of 0. 
 
Given two independent flows, QA and QB, the probability of the successive exceedence of both 
QA and QB is given by: 
 
 )Q(P )Q(P = )Q and Q(P BrArBAr  (4.6) 
 
If the exceedence of a flow QA excludes the exceedence of another flow Q2, the two events are 
said to be mutually exclusive. For mutually exclusive events, the probability of exceedence of 
either QA or QB is given by: 
 
 )Q(P + )Q(P = )Q or Q(P BrArBAr  (4.7) 
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4.2.5 Return Period 
If the exceedence probability of a given annual peak flow or its relative frequency determined 
from Equation 4.3 is 0.2, this means that there is a 20 percent chance that this flood, over a long 
period of time, will be exceeded in any one year. Stated another way, this flood will be exceeded 
on an average of once every 5 years. That time interval is called the return period, recurrence 
interval, or exceedence frequency.  
 
The return period, Tr, is related to the probability of exceedence by: 
 

 
)Q(P

1 = T
Ar

r  (4.8) 

 
The designer is cautioned to remember that a flood with a return period of 5 years does not 
mean this flood will occur once every 5 years. As noted, the flood has a 20 percent probability of 
being exceeded in any year, and there is no preclusion of the 5-year flood being exceeded in 
several consecutive years. Two 5-year floods can occur in two consecutive years; there is also 
a probability that a 5-year flood may not be exceeded in a 10-year period. The same is true for 
any flood of specified return period. 

4.2.6 Estimation of Parameters 
Flood frequency analysis uses sample information to fit a population, which is a probability 
distribution. These distributions have parameters that must be estimated in order to make 
probability statements about the likelihood of future flood magnitudes. A number of methods for 
estimating the parameters are available. USGS Bulletin 17B (1982) uses the method of 
moments, which is just one of the parameter-estimation methods. The method of maximum 
likelihood is a second method. 
 
The method of moments equates the moments of the sample flood record to the moments of the 
population distribution, which yields equations for estimating the parameters of the population 
as a function of the sample moments. As an example, if the population is assumed to follow 
distribution f(x), then the sample mean (X̄) could be related to the definition of the population 
mean (µ): 
 

 (x)dxfx = X ∫
∞

∞−

 (4.9) 

 
and the sample variance (S2) could be related to the definition of the population variance (σ2): 
 

 f(x)dx)  (X = S 22 µ−∫
∞

∞−

 (4.10) 

 
Since f(x) is a function that includes the parameters (µ and σ2), the solution of Equations 4.9 
and 4.10 will be expressions that relate X̄ and S2 to the parameters µ and σ2. 
 
While maximum likelihood estimation (MLE) is not used in USGS Bulletin 17B (1982) and it is 
more involved than the method of moments, it is instructive to put MLE in perspective. MLE 
defines a likelihood function that expresses the probability of obtaining the population 
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parameters given that the measured flood record has occurred. For example, if µ and σ are the 
population parameters and the flood record X contains N events, the likelihood function is: 
 

 ),|(Xf = )X., . ,.X,X|,L( i

N

N21
1= i

σµσµ Π  (4.11) 

 
where f(XI |µ, σ) is the probability distribution of X as a function of the parameters. The solution 
of Equation 4.11 will yield expressions for estimating µ and σ from the flood record X. 
 

4.2.7 Frequency Analysis Concepts 
Future floods cannot be predicted with certainty. Therefore, their magnitude and frequency are 
treated using probability concepts. To do this, a sample of flood magnitudes are obtained and 
analyzed for the purpose of estimating a population that can be used to represent flooding at 
that location. The assumed population is then used in making projections of the magnitude and 
frequency of floods. It is important to recognize that the population is estimated from sample 
information and that the assumed population, not the sample, is then used for making 
statements about the likelihood of future flooding. The purpose of this section is to introduce 
concepts that are important in analyzing sample flood data in order to identify a probability 
distribution that can represent the occurrence of flooding. 

4.2.7.1 Frequency Histograms 

Frequency distributions are used to facilitate an analysis of sample data. A frequency 
distribution, which is sometimes presented as a histogram, is an arrangement of data by classes 
or categories with associated frequencies of each class. The frequency distribution shows the 
magnitude of past events for certain ranges of the variable. Sample probabilities can also be 
computed by dividing the frequencies of each interval by the sample size. 
 
A frequency distribution or histogram is constructed by first examining the range of magnitudes 
(i.e., the difference between the largest and the smallest floods) and dividing this range into a 
number of conveniently sized groups, usually between 5 and 20. These groups are called class 
intervals. The size of the class interval is simply the range divided by the number of class 
intervals selected. There is no precise rule concerning the number of class intervals to select, 
but the following guidelines may be helpful: 
 
1. The class intervals should not overlap, and there should be no gaps between the bounds of 

the intervals. 
 
2. The number of class intervals should be chosen so that most class intervals have at least 

one event. 
 
3. It is preferable that the class intervals are of equal width. 
 
4. It is also preferable for most class intervals to have at least five occurrences; this may not be 

practical for the first and last intervals. 
 
Example 4.3. Using these rules, the discharges for Mono Creek listed in Table 4.1 are placed 
into a frequency histogram using class intervals of 5 m3/s (SI) and 200 ft3/s (CU units) (see 
Table 4.4). These data can also be represented graphically by a frequency histogram as shown 



4-14 

in Figure 4.6. Since relative frequency has been defined as the number of events in a certain 
class of events divided by the sample size, the histogram can also represent relative frequency 
(or probability) as shown on the right-hand ordinate of Figure 4.6. 
 
From this frequency histogram, several features of the data can now be illustrated. Notice that 
there are some ranges of magnitudes that have occurred more frequently than others; also 
notice that the data are somewhat spread out and that the distribution of the ordinates is not 
symmetrical. While an effort was made to have frequencies of five or more, this was not 
possible with the class intervals selected. Because of the small sample size, it is difficult to 
assess the distribution of the population using the frequency histogram. It should also be noted 
that because the CU unit intervals are not a conversion from the SI, they represent an 
alternative interval selection. This illustrates that interval selection may influence the 
appearance of a histogram. 
 

Table 4.4. Frequency Histogram and Relative Frequency Analysis  
of Annual Flood Data for Mono Creek 

(a) 5 m3/s intervals (SI) 
Interval of 

Annual 
Floods 
(m3/s) Frequency 

Relative 
Frequency 

Cumulative 
Frequency 

0 – 9.99 0 0.000 0.000 
10 – 14.99 3 0.104 0.104 
15 – 19.99 1 0.034 0.138 
20 – 24.99 4 0.138 0.276 
25 – 29.99 5 0.172 0.448 
30 – 34.99 8 0.276 0.724 
35 – 39.99 3 0.104 0.828 
40 – 44.99 4 0.138 0.966 
45 or larger 1 0.034 1.000 

 
(b) 200 ft3/s intervals (CU Units) 

Interval of 
Annual 
Floods 
  (ft3/s) Frequency 

Relative 
Frequency 

Cumulative 
Frequency 

0 – 199 0 0.000 0.000 
200 – 399 0 0.000 0.000 
400 – 599 4 0.138 0.138 
600 – 799 1 0.034 0.172 
800 – 999 7 0.241 0.414 

1000 – 1199 7 0.241 0.655 
1200 – 1399 5 0.172 0.828 
1400 – 1599 4 0.138 0.966 
1600 – 1799 1 0.034 1.000 
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Example 4.4. Many flood records have relatively small record lengths. For such records, 
histograms may not be adequate to assess the shape characteristics of the distribution of 
floods. The flood record for Pond Creek of Table 4.3 provides a good illustration. With a record 
length of 24, it would be impractical to use more than 5 or 6 intervals when creating a histogram. 
Three histograms were compiled from the annual flood series (see Table 4.5). The first 
histogram uses an interval of 40 m3/s (1,412 ft3 /s) and results in a hydrograph-like shape, with 
few values in the lowest cell and a noticeable peak in the second cell. The second histogram 
uses an interval of 50 m3/s (1,766 ft3/s). This produces a box-like shape with the first two cells 
having a large number of occurrences and the other cells very few, with one intermediate cell 
not having any occurrences. The third histogram uses an unequal cell width and produces an 
exponential-decay shape. These results indicate that short record lengths make it difficult to 
identify the distribution of floods.  
 

Table 4.5. Alternative Frequency (f) Histograms of the Pond Creek, KY,  
Annual Maximum Flood Record (1945-1968) 

Histogram 3 
Interval 

Interval 
Histogram 1 
Frequency 

Histogram 2 
Frequency 

Histogram 3 
Frequency (m3/s)  (ft3/s) 

1 3 10 10 0 – 50 0 – 1,765 

2 13 10 5 50 – 75 1,766 – 
2,648 

3 4 3 5 75 – 100 2,649 – 
3,531 

4 3 0 3 100 – 150 3,532 – 
5,297 

5 1 1 1 > 150 > 5,297 

 

4.2.7.2 Central Tendency 
The clustering of the data about particular magnitudes is known as central tendency, of which 
there are a number of measures. The most frequently used is the average or the mean value. 
The mean value is calculated by summing all of the individual values of the data and dividing 
the total by the number of individual data values  
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Figure 4.6b. Sample frequency histogram and probability, Mono Creek, CA 
( x  = 1060 ft3/s and S = 330 ft3/s) 
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Figure 4.6a. Sample frequency histogram and probability, Mono Creek, CA 
( x  = 30.0 m3/s and S = 9.3 m3/s) 
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where, 
 
 Q̄̄ = average or mean peak. 
   
The median, another measure of central tendency, is the value of the middle item when the 
items are arranged according to magnitude. When there is an even number of items, the 
median is taken as the average of the two central values.  
 
The mode is a third measure of central tendency. The mode is the most frequent or most 
common value that occurs in a set of data. For continuous variables, such as discharge rates, 
the mode is defined as the central value of the most frequent class interval. 
 

4.2.7.3  Variability 
The spread of the data is called dispersion. The most commonly used measure of dispersion is 
the standard deviation. The standard deviation, S, is defined as the square root of the mean 
square of the deviations from the average value. This is shown symbolically as: 
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The second expression on the right-hand side of Equation 4.13 is often used to facilitate and 
improve on the accuracy of hand calculations. 
 
Another measure of dispersion of the flood data is the variance, or simply the standard deviation 
squared. A measure of relative dispersion is the coefficient of variation, V, or the standard 
deviation divided by the mean peak: 

 
Q
S = V  (4.14) 

4.2.7.4 Skew 
The symmetry of the frequency distribution, or more accurately the asymmetry, is called skew. 
One common measure of skew is the coefficient of skew, G. The skew coefficient is calculated 
by: 
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where all symbols are as previously defined. Again, the second expression on the right-hand 
side of the equation is for ease of hand computations. 
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If a frequency distribution is perfectly symmetrical, the coefficient of skew is zero. If the 
distribution has a longer "tail" to the right of the central maximum than to the left, the distribution 
has a positive skew and G would be positive. If the longer tail is to the left of the central 
maximum, the distribution has a negative coefficient of skew.  
 
Example 4.5. The computations below illustrate the computation of measures of central 
tendency, standard deviation, variance, and coefficient of skew for the Mono Creek frequency 
distribution shown in Figure 4.6 based on the data provided in Table 4.6. The mean value of the 
sample of floods is 30 m3/s (1,060 ft3/s), the standard deviation is 9.3 m3/s (330 ft3/s), and the 
coefficient of variation is 0.31. The coefficient of skew is –0.19, which indicates that the 
distribution is skewed negatively to the left. For the flow data in Table 4.6, the median value is 
30.0 m3/s (1,060 ft3/s). Computed values of the mean and standard deviation are also identified 
in Figure 4.6. 
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 Table 4.6. Computation of Statistical Characteristics:  Annual Maximum Flows for 
Mono Creek, CA 

 
 

Year Rank 

Annual 
Maximum 

(m3/s) 

 
Annual 

Maximum
(ft³/s) 

 
 

[(X/X̄)] 

 
 

[(X/X̄)-1]

 
 

[(X/X̄)-1]2 

 
 

[(X/X̄)-1]3 
1938 1 49.8 1,760 

 
1.664 

 
 0.664 

 
0.441 

 
 0.2929  

1943 2 40.8 1,440 
 

1.362 
 

 0.362 
 

0.131 
 

 0.0473 
1927 3 40.2 1,420 

 
1.343 

 
 0.343 

 
0.117 

 
 0.0402 

1932 4 40.2 1,420 
 

1.343 
 

 0.343 
 

0.117 
 

 0.0402 
1941 5 40.2 1,420 

 
1.343 

 
 0.343 

 
0.117 

 
 0.0402 

1922 6 39.4 1,390 
 

1.314 
 

 0.314 
 

0.099 
 

 0.0310 
1945 7 38.8 1,370 

 
1.295 

 
 0.295 

 
0.087 

 
 0.0257 

1933 8 38.2 1,350 
 

1.276 
 

 0.276 
 

0.076 
 

 0.0211 
1935 9 34.8 1,230 

 
1.163 

 
 0.163 

 
0.027 

 
 0.0043 

1937 10 34.3 1,210 
 

1.144 
 

 0.144 
 

0.021 
 

 0.0030 
1942 11 33.1 1,170 

 
1.106 

 
 0.106 

 
0.011 

 
 0.0012 

1940 12 32.0 1,130 
 

1.068 
 

 0.068 
 

0.005 
 

 0.0003 
1928 13 31.4 1,110 

 
1.049 

 
 0.049 

 
0.002 

 
 0.0001 

1950 14 31.2 1,100 
 

1.040 
 

 0.040 
 

0.002 
 

 0.0001 
1925 15 30.0 1,060 

 
1.002 

 
 0.002 

 
0.000 

 
 0.0000 

1936 16 30.0 1,060 
 

1.002 
 

 0.002 
 

0.000 
 

 0.0000 
1926 17 29.2 1,030 

 
0.974 

 
-0.026 

 
0.001 

 
 0.0000 

1947 18 28.0    988 
 

0.934 
 

-0.066 
 

0.004 
 

-0.0003 
1923 19 26.6    940 

 
0.889 

 
-0.111 

 
0.012 

 
-0.0014 

1949 20 25.9    916 
 

0.866 
 

-0.134 
 

0.018 
 

-0.0024 
1946 21 25.8    910 

 
0.860 

 
-0.140 

 
0.019 

 
-0.0027 

1944 22 24.2    855 
 

0.808 
 

-0.192 
 

0.037 
 

-0.0070 
1930 23 24.0    848 

 
0.802 

 
-0.198 

 
0.039 

 
-0.0078 

1948 24 23.7    838 
 

0.792 
 

-0.208 
 

0.043 
 

-0.0090 
1929 25 21.2    750 

 
0.709 

 
-0.291 

 
0.085 

 
-0.0246 

1939 26 15.3    540 
 

0.511 
 

-0.489 
 

0.240 
 

-0.1173 
1931 27 14.9    525 

 
0.496 

 
-0.504 

 
0.254 

 
-0.1277 

1924 28 13.8    488 
 

0.461 
 

-0.539 
 

0.290 
 

-0.1562 
1934 29 11.4    404 

 
0.382 

 
-0.618 

 
0.382 

 
-0.2361  

 TOTAL 
 

868.4    30,672 
 

 
 

 
 

2.677 
 

-0.1449 
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4.2.7.5 Generalized and Weighted Skew 
Three methods are available for representing the skew coefficient. These include the station 
skew, a generalized skew, and a weighted skew. Since the skew coefficient is very sensitive to 
extreme values, the station skew (i.e., the skew coefficient computed from the actual data) may 
not be accurate if the sample size is small. In this case, USGS Bulletin 17B (1982) recommends 
use of a generalized skew coefficient determined from a map that shows isolines of generalized 
skew coefficients of the logarithms of annual maximum stream flows throughout the United 
States. A map of generalized skew is provided in Bulletin 17B. This map also gives average 
skew coefficients by one-degree quadrangles over most of the country. 
 
Often the station skew and generalized skew can be combined to provide a better estimate for a 
given sample of flood data. USGS Bulletin 17B (1982) outlines a procedure based on the 
concept that the mean-square error (MSE) of the weighted estimate is minimized by weighting 
the station and generalized skews in inverse proportion to their individual MSEs, which are 
defined as the sum of the squared differences between the true and estimated values of a 
quantity divided by the number of observations. In analytical form, this concept is given by the 
equation: 
 

 
MSE + MSE

)G( MSE + (G) MSE = G
GG

GG
W  (4.16) 

 
where, 
 GW = weighted skew 
 G = station skew 
 Ḡ = generalized skew 
 MSEG, MSEḠ = mean-square errors for the station and generalized skews, respectively.  
 
Equation 4.16 is based on the assumption that station and generalized skew are independent. If 
they are independent, the weighted estimate will have a lower variance than either the station or 
generalized skew. 
 
When Ḡ is taken from the map of generalized skews in USGS Bulletin 17B (1982), MSEḠ = 
0.302. The value of MSEG can be obtained from Table 4.7, which is from Bulletin 17B, or 
approximated by the equation: 

 10 = MSE   10 
G

10nlogB -A 





















 (4.17a) 
 
where n is the record length and 
  

A = -0.33 + 0.08 G  for G ≤ 0.90 (4.17b) 

A = -0.52 + 0.30 G  for G  > 0.90 (4.17c) 
and 

B =  0.94 - 0.26 G  for G  ≤ 1.50 (4.17d) 

B =  0.55 for G  > 1.50 (4.17e) 
 
If the difference between the generalized and station skews is greater than 0.5, the data and 
basin characteristics should be reviewed, possibly giving more weight to the station skew.  
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Table 4.7. Summary of Mean Square Error of Station Skew a Function of Record Length 

and Station Skew 
 

 Record Length, N or H (years) 
Skew 10 20 30 40 50 60 70 80 90 100 

0.0 0.468 0.244 0.167 0.127 0.103 0.087 0.075 0.066 0.059 0.054
0.1 0.476 0.253 0.175 0.134 0.109 0.093 0.080 0.071 0.064 0.058
0.2 0.485 0.262 0.183 0.142 0.116 0.099 0.086 0.077 0.069 0.063
0.3 0.494 0.272 0.192 0.150 0.123 0.105 0.092 0.082 0.074 0.068
0.4 0.504 0.282 0.201 0.158 0.131 0.113 0.099 0.089 0.080 0.073
0.5 0.513 0.293 0.211 0.167 0.139 0.120 0.106 0.095 0.087 0.079
0.6 0.522 0.303 0.221 0.176 0.148 0.128 0.114 0.102 0.093 0.086
0.7 0.532 0.315 0.231 0.186 0.157 0.137 0.122 0.110 0.101 0.093
0.8 0.542 0.326 0.243 0.196 0.167 0.146 0.130 0.118 0.109 0.100
0.9 0.562 0.345 0.259 0.211 0.181 0.159 0.142 0.130 0.119 0.111
1.0 0.603 0.376 0.285 0.235 0.202 0.178 0.160 0.147 0.135 0.126
1.1 0.646 0.410 0.315 0.261 0.225 0.200 0.181 0.166 0.153 0.143
1.2 0.692 0.448 0.347 0.290 0.252 0.225 0.204 0.187 0.174 0.163
1.3 0.741 0.488 0.383 0.322 0.281 0.252 0.230 0.212 0.197 0.185
1.4 0.794 0.533 0.422 0.357 0.314 0.283 0.259 0.240 0.224 0.211
1.5 0.851 0.581 0.465 0.397 0.351 0.318 0.292 0.271 0.254 0.240
1.6 0.912 0.623 0.498 0.425 0.376 0.340 0.313 0.291 0.272 0.257
1.7 0.977 0.667 0.534 0.456 0.403 0.365 0.335 0.311 0.292 0.275
1.8 1.047 0.715 0.572 0.489 0.432 0.391 0.359 0.334 0.313 0.295
1.9 1.122 0.766 0.613 0.523 0.463 0.419 0.385 0.358 0.335 0.316
2.0 1.202 0.821 0.657 0.561 0.496 0.449 0.412 0.383 0.359 0.339
2.1 1.288 0.880 0.704 0.601 0.532 0.481 0.442 0.410 0.385 0.363
2.2 1.380 0.943 0.754 0.644 0.570 0.515 0.473 0.440 0.412 0.389
2.3 1.479 1.010 0.808 0.690 0.610 0.552 0.507 0.471 0.442 0.417
2.4 1.585 1.083 0.866 0.739 0.654 0.592 0.543 0.505 0.473 0.447
2.5 1.698 1.160 0.928 0.792 0.701 0.634 0.582 0.541 0.507 0.479
2.6 1.820 1.243 0.994 0.849 0.751 0.679 0.624 0.580 0.543 0.513
2.7 1.950 1.332 1.066 0.910 0.805 0.728 0.669 0.621 0.582 0.550
2.8 2.089 1.427 1.142 0.975 0.862 0.780 0.716 0.666 0.624 0.589
2.9 2.239 1.529 1.223 1.044 0.924 0.836 0.768 0.713 0.669 0.631
3.0 2.399 1.638 1.311 1.119 0.990 0.895 0.823 0.764 0.716 0.676
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4.2.8 Probability Distribution Functions 
If the frequency histogram from a very large population of floods was constructed, it would be 
possible to define very small class intervals and still have a number of events in each interval. 
Under these conditions, the frequency histogram would approach a smooth curve (see Figure 
4.7) where the ordinate axis density units are the inverse of the abscissa units. This curve, 
which is called the probability density function, f(Q), encloses an area of 1.0 or: 
 

 1 = f(Q)dQ 
-
∫
∞

∞

 (4.18) 

 
  
The cumulative distribution function, F(Q), equals the area under the probability density 
function, f(Q), from -∞  to Q: 

 f(Q)dQ = F(Q)
Q

∫
∞

 (4.18a) 

  

Equation 4.18 is a mathematical statement that the sum of the probabilities of all events is equal 
to unity. Two conditions of hydrologic probability are readily illustrated from Equations 4.18 and 
4.18a. Figure 4.8a shows that the probability of a flow Q falling between two known flows, Q1 
and Q2, is the area under the probability density curve between Q1 and Q2. Figure 4.8b shows 
the probability that a flood Q exceeds Q1 is the area under the curve from Q1 to infinity. From 
Equation 4.18a, this probability is given by F(Q > Q1) = 1 - F(Q < Q1). 
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Figure 4.7. Probability density function 
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As can be seen from Figure 4.8, the calculation for probability from the density function is 
somewhat tedious. A further refinement of the frequency distribution is the cumulative frequency 
distribution. Table 4.4 illustrates the development of a cumulative frequency distribution, which 
is simply the cumulative total of the relative frequencies by class interval. For each range of 
flows, Table 4.4 defines the number of times that floods equal or exceed the lower limit of the 
class interval and gives the cumulative frequency.  
 
Using the cumulative frequency distribution, it is possible to compute directly the 
nonexceedence probability for a given magnitude. The nonexceedence probability is defined as 
the probability that the specified value will not be exceeded. The exceedence probability is 1.0 
minus the nonexceedence probability. The sample cumulative frequency histogram for the 
Mono Creek, CA, annual flood series is shown in Figure 4.9.  
 
Again, if the sample were very large so that small class intervals could be defined, the 
histogram becomes a smooth curve that is defined as the cumulative probability function, F(Q), 
shown in Figure 4.10a. This figure shows the area under the curve to the left of each Q of 
Figure 4.7 and defines the probability that the flow will be less than some stated value (i.e., the 
nonexceedence probability). 
 
Another convenient representation for hydrologic analysis is the complementary probability 
function, G(Q), defined as:  
 
 )Q  (QP = F(Q) - 1 = G(Q) 1r ≥  (4.19) 

 
The function, G(Q), shown in Figure 4.10b, is the exceedence probability (i.e., the probability 
that a flow of a given magnitude will be equaled or exceeded). 
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Figure 4.8.  Hydrologic probability from density functions 
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4.2.9 Plotting Position Formulas 
When making a flood frequency analysis, it is common to plot both the assumed population and 
the peak discharges of the sample. To plot the sample values on frequency paper, it is 
necessary to assign an exceedence probability to each magnitude. A plotting position formula is 
used for this purpose. 
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Figure 4.10. Cumulative and complementary cumulative distribution functions 
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Figure 4.9. Cumulative frequency histogram, Mono Creek, CA 
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A number of different formulas have been proposed for computing plotting position probabilities, 
with no unanimity on the preferred method. Beard (1962) illustrates the nature of this problem. If 
a very long period of record, say 2,000 years, is broken up into 100 20-year records and each is 
analyzed separately, then the highest flood in each of these 20-year records will have the same 
probability of occurrence of 0.05. Actually, one of these 100 highest floods is the 1 in 2,000-year 
flood, which is a flood with an exceedence probability of 0.0005. Some of the records will also 
contain 100-year floods and many will contain floods in excess of the true 20-year flood. 
Similarly some of the 20-year records will contain highest floods that are less than the true 
20-year flood.  
 
A general formula for computing plotting positions is: 
 

 
1) + b  a  (n

a i = P
−−
−

 (4.20) 

where, 
 i = rank order of the ordered flood magnitudes, with the largest flood having a rank of 1 
 n = record length 
 a, b = constants for a particular plotting position formula. 
 
The Weibull, Pw (a = b = 0), Hazen, Ph (a = b = 0.5), and Cunnane, Pc (a = b = 0.4) are three 
possible plotting position formulas: 
 

 
1n

iPw +
=  (4.21a) 

 

 
n

5.0iPh
−

=  (4.21b) 

 

 
2.0n
4.0iPc +

−
=  (4.21c) 

 
The data are plotted by placing a point for each value of the flood series at the intersection of 
the flood magnitude and the exceedence probability computed with the plotting position formula. 
The plotted data should approximate the population line if the assumed population model is a 
reasonable assumption. 
 
For the partial-duration series where the number of floods exceeds the number of years of 
record, Beard (1962) recommends:  
 

 
n
0.5-i = 

n2
1i2 = P −  (4.22) 

 
where i is the rank order number of the event and n is the record length. 
 

4.3 STANDARD FREQUENCY DISTRIBUTIONS 
Several cumulative frequency distributions are commonly used in the analysis of hydrologic data 
and, as a result, they have been studied extensively and are now standardized. The frequency 
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distributions that have been found most useful in hydrologic data analysis are the normal 
distribution, the log-normal distribution, the Gumbel extreme value distribution, and the 
log-Pearson Type III distribution. The characteristics and application of each of these 
distributions will be presented in the following sections. 

4.3.1 Normal Distribution 
The normal or Gaussian distribution is a classical mathematical distribution commonly used in 
the analysis of natural phenomena. The normal distribution has a symmetrical, unbounded, 
bell-shaped curve with the maximum value at the central point and extending from - ∞  to + ∞ . 
The normal distribution is shown in Figure 4.11a. 
 

For the normal distribution, the maximum value occurs at the mean. Because of symmetry, half 
of the flows will be below the mean and half are above. Another characteristic of the normal 
distribution curve is that 68.3 percent of the events fall between ±1 standard deviation (S), 95 
percent of the events fall within ±2S, and 99.7 percent fall within ±3S. In a sample of flows, 
these percentages will be approximated.  
 
For the normal distribution, the coefficient of skew is zero. The function describing the normal 
distribution curve is:  

 
( )

π2S
e = (X)f

22
XX S2− 







 −

 (4.23) 

 
Note that only two parameters are necessary to describe the normal distribution: the mean 
value, X̄, and the standard deviation, S. 
 
One disadvantage of the normal distribution is that it is unbounded in the negative direction 
whereas most hydrologic variables are bounded and can never be less than zero. For this 
reason and the fact that many hydrologic variables exhibit a pronounced skew, the normal 
distribution usually has limited applications. However, these problems can sometimes be 

 
 

x z
0 +1 -1X + S X - S X 

(a) (b)  
 
 

Figure 4.11. (a) Normal probability distribution; (b) Standard normal distribution 
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overcome by performing a log transform on the data. Often the logarithms of hydrologic 
variables are normally distributed. 

4.3.1.1 Standard Normal Distribution 
A special case of the normal distribution of Equation 4.23 is called the standard normal 
distribution and is represented by the variate z (see Figure 4.11b). The standard normal 
distribution always has a mean of 0 and a standard deviation of 1. If the random variable X has 
a normal distribution with mean X̄ and standard deviation S, values of X can be transformed so 
that they have a standard normal distribution using the following transformation: 
 

 
S

X - X = z  (4.24) 

 
If X̄, S, and z for a given frequency are known, then the value of X corresponding to the 
frequency can be computed by algebraic manipulation of Equation 4.24: 
 
 zS + X = X  (4.25) 
 
To illustrate, the 10-year event has an exceedence probability of 0.10 or a nonexceedence 
probability of 0.90. Thus, the corresponding value of z from Table 4.8 is 1.2816. If floods have a 
normal distribution with a mean of 120 m3/s (4,240 ft3/s) and a standard deviation of 35 m³/s 
(1,230 ft3/s), the 10-year flood for a normal distribution is computed with Equation 4.25: 
 

Variable Value in SI Value in CU 
 zS + X = X

 
/sm 165 = 1.2816(35) + 120 = 3 /sft 165 = 0)1.2816(123 + 4240 = 3  

 
Similarly, the frequency of a flood of 181 m3/s (6,390 ft3/s) can be estimated using the transform 
of Equation 4.24: 
 

Variable Value in SI Value in CU 

S
xxz −

=  75.1
35

120181
=

−
=  75.1

1230
42406390

=
−

=  

 
From Table 4.8, this corresponds to an exceedence probability of 4 percent, which is the 25-
year flood.  
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 Table 4.8. Selected Values of the Standard Normal Deviate (z) for the Cumulative 

Normal Distribution  
 

Exceedence 
Probability 

     %      

Return 
Period 
 (yrs)  

z 

50   2 0.0000 
20   5 0.8416 
10   10 1.2816 
4  25 1.7507 
2  50 2.0538 
1  100  2.3264 

0.2 500  2.8782 
 

4.3.1.2 Frequency Analysis for a Normal Distribution 

An arithmetic-probability graph has a specially transformed horizontal probability scale. The 
horizontal scale is transformed in such a way that the cumulative distribution function for data 
that follow a normal distribution will plot as a straight line. If a series of peak flows that are 
normally distributed are plotted against the cumulative frequency function or the exceedence 
frequency on the probability scale, the data will plot as a straight line with the equation: 

 
 SK + X = X  (4.26) 

 
where X is the flood flow at a specified frequency. The value of K is the frequency factor of the 
distribution. For the normal distribution, K equals z where z is taken from Table 4.8. 
 
The procedure for developing a frequency curve for the normal distribution is as follows: 
 
1. Compute the mean X̄ and standard deviation S of the annual flood series. 
 
2. Plot two points on the probability paper:  (a) X̄ + S at an exceedence probability of 0.159 

(15.9%) and (b) X̄ - S at an exceedence probability of 0.841 (84.1%). 
 
3. Draw a straight line through these two points; the accuracy of the graphing can be checked 

by ensuring that the line passes through the point defined by X̄ at an exceedence probability 
of 0.50 (50%). 

 
The straight line represents the assumed normal population. It can be used either to make 
probability estimates for given values of X or to estimate values of X for given exceedence 
probabilities.  

4.3.1.3 Plotting Sample Data 

Before a computed frequency curve is used to make estimates of either flood magnitudes or 
exceedence probabilities, the assumed population should be verified by plotting the data. The 
following steps are used to plot the data:  
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1. Rank the flood series in descending order, with the largest flood having a rank of 1 and the 

smallest flood having a rank of n.  
 
2. Use the rank (i) with a plotting position formula such as Equation 4.21, and compute the 

plotting probabilities for each flood.  
 
3. Plot the magnitude X against the corresponding plotting probability.  
 
If the data follow the trend of the assumed population line, one usually assumes that the data 
are normally distributed. It is not uncommon for the sample points on the upper and lower ends 
to deviate from the straight line. Deciding whether or not to accept the computed straight line as 
the population is based on experience rather than an objective criterion.  

4.3.1.4 Estimation with the Frequency Curve 

Once the population line has been verified and accepted, the line can be used for estimation. 
While graphical estimates are acceptable for some work, it is often important to use Equations 
4.24 and 4.25 in estimating flood magnitudes or probabilities. To make a probability estimate p 
for a given magnitude, use the following procedure: 
 
1. Use Equation 4.24 to compute the value of the standard normal deviate.  
 
2. Enter Table 4.9 with the value of z and obtain the exceedence probability.  
 
To make estimates of the magnitude for a given exceedence probability, use the following 
procedure:  
 
1. Enter Table 4.9 with the exceedence probability and obtain the corresponding value of z.  
 
2. Use Equation 4.25 with X̄, S, and z to compute the magnitude X.  
 



4-30 

 
Table 4.9. Probabilities of the Cumulative Standard Normal Distribution for Selected 

Values of the Standard Normal Deviate (z) 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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Table 4.9. Probabilities of the Cumulative Standard Normal Distribution for Selected 
Values of the Standard Normal Deviate (z) 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Example 4.6. To illustrate the use of these concepts, consider the data of Table 4.10. These 
data are the annual peak floods for the Medina River near San Antonio, Texas, for the period 
1940-1982 (43 years of record) ranked from largest to smallest. Using Equations 4.12 and 4.13 
for mean and standard deviation, respectively, and assuming the data are normally distributed, 
the 10-year and 100-year floods are computed as follows using SI and CU units:  
 

Variable Value in SI Value in CU 
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/sft074,7
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22.48602,6 3
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−

 Sz + X = X 1010  187.0 + 1.282 (200.4)  
= 444 m3/s 

6,602 +1.282 (7,074) 
= 15,700 ft3/s 

 Sz + X =X 100100  187.0 + 2.326 (200.4)  
= 653 m3/s 

6,602 +2.326(7,074) 
= 23,100 ft3/s 

 
When plotted on arithmetic probability scales, these two points are sufficient to establish the 
straight line on Figure 4.12 represented by Equation 4.26. For comparison, the measured 
discharges are plotted in Figure 4.12 using the Weibull plotting-position formula. The 
correspondence between the normal frequency curve and the actual data is poor. Obviously, 
the data are not normally distributed. Using Equations 4.14 and 4.15 to estimate the variance 
and skew, it becomes clear that the data have a large skew while the normal distribution has a 
skew of zero. This explains the poor correspondence in this case. 
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Table 4.10. Frequency Analysis Computations  
for the Normal Distribution: Medina River, TX 

(Gage 08181500) 

Year Rank Plotting 
Probability 

Annual 
Maximum 

(m3/s) 

Annual 
Maximum 

(ft3/s) 
X/X̄ (X/X̄)-1 [(X/X̄)-1]2 [(X-X̄)-1]3

1973 1 0.023 903.4 31,900 4.832 3.832 14.681 56.250 
1946 2 0.045 900.6 31,800 4.816 3.816 14.565 55.586 
1942 3 0.068 495.6 17,500 2.651 1.651 2.724 4.496 
1949 4 0.091 492.8 17,400 2.635 1.635 2.674 4.374 
1981 5 0.114 410.6 14,500 2.196 1.196 1.431 1.711 
1968 6 0.136 371.0 13,100 1.984 0.984 0.968 0.953 
1943 7 0.159 342.7 12,100 1.833 0.833 0.693 0.577 
1974 8 0.182 274.1 9,680 1.466 0.466 0.217 0.101 
1978 9 0.205 267.3 9,440 1.430 0.430 0.185 0.079 
1958 10 0.227 261.1 9,220 1.396 0.396 0.157 0.062 
1982 11 0.250 231.1 8,160 1.236 0.236 0.056 0.013 
1976 12 0.273 212.7 7,510 1.137 0.137 0.019 0.003 
1941 13 0.295 195.1 6,890 1.044 0.044 0.002 0.000 
1972 14 0.318 180.1 6,360 0.963 -0.037 0.001 0.000 
1950 15 0.341 160.3 5,660 0.857 -0.143 0.020 -0.003 
1967 16 0.364 155.2 5,480 0.830 -0.170 0.029 -0.005 
1965 17 0.386 153.8 5,430 0.822 -0.178 0.032 -0.006 
1957 18 0.409 146.7 5,180 0.785 -0.215 0.046 -0.010 
1953 19 0.432 140.5 4,960 0.751 -0.249 0.062 -0.015 
1979 20 0.455 134.5 4,750 0.719 -0.281 0.079 -0.022 
1977 21 0.477 130.8 4,620 0.700 -0.300 0.090 -0.027 
1975 22 0.500 117.0 4,130 0.626 -0.374 0.140 -0.053 
1962 23 0.523 112.1 3,960 0.600 -0.400 0.160 -0.064 
1945 24 0.545 100.3 3,540 0.536 -0.464 0.215 -0.100 
1970 25 0.568 95.2 3,360 0.509 -0.491 0.241 -0.118 
1959 26 0.591 94.9 3,350 0.507 -0.493 0.243 -0.120 
1960 27 0.614 90.6 3,200 0.485 -0.515 0.266 -0.137 
1961 28 0.636 86.4 3,050 0.462 -0.538 0.289 -0.156 
1971 29 0.659 83.5 2,950 0.447 -0.553 0.306 -0.169 
1969 30 0.682 77.3 2,730 0.413 -0.587 0.344 -0.202 
1940 31 0.705 71.9 2,540 0.385 -0.615 0.379 -0.233 
1966 32 0.727 61.2 2,160 0.327 -0.673 0.453 -0.305 
1951 33 0.750 60.9 2,150 0.326 -0.674 0.455 -0.307 
1964 34 0.773 60.6 2,140 0.324 -0.676 0.457 -0.309 
1948 35 0.795 58.1 2,050 0.310 -0.690 0.475 -0.328 
1944 36 0.818 56.6 2,000 0.303 -0.697 0.486 -0.339 
1980 37 0.841 56.1 1,980 0.300 -0.700 0.490 -0.343 
1956 38 0.864 49.6 1,750 0.265 -0.735 0.540 -0.397 
1947 39 0.886 41.6 1,470 0.223 -0.777 0.604 -0.470 
1955 40 0.909 34.0 1,200 0.182 -0.818 0.670 -0.548 
1963 41 0.932 25.2 890 0.135 -0.865 0.749 -0.648 
1954 42 0.955 24.5 865 0.131 -0.869 0.755 -0.656 
1952 43 0.977 22.7 801 0.121 -0.879 0.772 -0.679 

Total  8,040.3 283,906   48.22 117.4 
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4.3.2 Log-Normal Distribution 
The log-normal distribution has the same characteristics as the normal distribution except that 
the dependent variable, X, is replaced with its logarithm. The characteristics of the log-normal 
distribution are that it is bounded on the left by zero and it has a pronounced positive skew. 
These are both characteristics of many of the frequency distributions that result from an analysis 
of hydrologic data.  
 
If a logarithmic transformation is performed on the normal distribution function, the resulting 
logarithmic distribution is normally distributed. This enables the z values tabulated in Tables 4-8 
and 4-9 for a standard normal distribution to be used in a log-normal frequency analysis (Table 
4.10). A three-parameter log-normal distribution exists, which makes use of a shift parameter. 
Only the zero-skew log-normal distribution will be discussed. As was the case with the normal 
distribution, log-normal probability scales have been developed, where the plot of the 
cumulative distribution function is a straight line. This scale uses a transformed horizontal scale 
based upon the probability function of the normal distribution and a logarithmic vertical scale. If 
the logarithms of the peak flows are normally distributed, the data will plot as a straight line 
according to the equation:   
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Figure 4.12. Normal distribution frequency curve, Medina River 
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 ySKYXlogY +==  (4.27) 
 
where, 
 Ȳ = average of the logarithms of X 
 Sy = standard deviation of the logarithms. 
 

4.3.2.1   Procedure 
The procedure for developing the graph of the log-normal distribution is similar to that for the 
normal distribution: 
 
1. Transform the values of the flood series X by taking logarithms:  Y = log X. 
 
2. Compute the log mean (Ȳ) and log standard deviation (Sy) using the logarithms. 
 
3. Using Ȳ and Sy, compute 10Ȳ + Sy and 10Ȳ - Sy.  Using logarithmic frequency paper, plot these 

two values at exceedence probabilities of 0.159 (15.9%) and 0.841 (84.1%), respectively. 
 
4. Draw a straight line through the two points. 
 
The data points can now be plotted on the logarithmic probability paper using the same 
procedure as outlined for the normal distribution. Specifically, the flood magnitudes are plotted 
against the probabilities from a plotting position formula (e.g., Equation 4.21).  

4.3.2.2    Estimation 
Graphical estimates of either flood magnitudes or probabilities can be taken directly from the 
line representing the assumed log-normal distribution. Values can also be computed using 
either:  
 

 
S

Y - Y = z
y

 (4.28) 

 
to obtain a probability for the logarithm of a given magnitude (Y = log X) or:  
 
 S z + Y = Y y  (4.29) 
 
to obtain a magnitude for a given probability. The value computed with Equation 4.29 must be 
transformed: 
 Y10 = X  (4.30)  
 
Two useful relations are also available to approximate the mean and the standard deviation of 
the logarithms, Y  and Sy, from X  and S of the original variables. These equations are  
 

 








S + X
X log 0.5 = Y

22

4

 (4.31) 
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and 

 




















X
X + S log = S 2

22
0.5

y  (4.32) 

 
 
Example 4.7. The log-normal distribution will be illustrated using the 43-year record from the 
Medina River shown in Table 4.11. Mean and standard deviation are calculated as follows: 
 

Variable Value in SI Value in CU 

 
n

Y
 = Y

i

n

1 = i
∑

 
091.2

43
92.89

==  639.3
43

48.156
==  



























∑
1 - n

1 - 
Y
Y

 Y = S

i
n

1 = i

2 0.5

y  394.0
42
492.1091.2

5.0

=





= 394.0

42
493.0639.3

5.0

=





=

 
Assuming the distribution of the logs is normal, the 10-year and 100-year floods are: 
 

Variable Value in SI Value in CU 

y1010 SzYY +=  =2.091+1.282 (0.394)=2.596 =3.639+1.282 (0.394)=4.144 

10Y
10 10X =  = 102.596  = 394 m3/s = 104.144  = 13,900 ft3/s 

y100100 SzYY +=  =2.091+2.326(0.394)=3.007 =3.639+2.326(0.394)=4.555 

100Y
100 10X =  = 103.007 = 1,020 m3/s = 104.555 = 35,900 ft3/s 

 
The measured flood data are also plotted on log-probability scales in Figure 4.13 together with 
the fitted log-normal distribution. (Note: When plotting X on the log scale, the actual values of X 
are plotted rather than their logarithms since the log-scale effectively transforms the data to their 
respective logarithms.)  Figure 4.13 shows that the log-normal distribution fits the actual data 
better than the normal distribution shown in Figure 4.12. A smaller skew, as calculated below, 
explains the improved fit: 
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Table 4.11. Frequency Analysis Computations for the Log-Normal Distribution:  

Medina River 
(a) SI Units 

Year Rank Plotting 
Probability 

Annual 
Max.(X) 
(m3/s) 

Y = log(X) Y/Ȳ [(Y/Ȳ)-1] [(Y/Ȳ)-1]2 [(Y/Ȳ)-1]3

1973 1 0.023 903.4 2.956 1.413 0.413 0.1709 0.0707 
1946 2 0.045 900.6 2.955 1.413 0.413 0.1704 0.0703 
1942 3 0.068 495.6 2.695 1.289 0.289 0.0834 0.0241 
1949 4 0.091 492.8 2.693 1.288 0.288 0.0827 0.0238 
1981 5 0.114 410.6 2.613 1.250 0.250 0.0624 0.0156 
1968 6 0.136 371.0 2.569 1.229 0.229 0.0523 0.0120 
1943 7 0.159 342.7 2.535 1.212 0.212 0.0450 0.0095 
1974 8 0.182 274.1 2.438 1.166 0.166 0.0275 0.0046 
1978 9 0.205 267.3 2.427 1.161 0.161 0.0258 0.0041 
1958 10 0.227 261.1 2.417 1.156 0.156 0.0242 0.0038 
1982 11 0.250 231.1 2.364 1.130 0.130 0.0170 0.0022 
1976 12 0.273 212.7 2.328 1.113 0.113 0.0128 0.0014 
1941 13 0.295 195.1 2.290 1.095 0.095 0.0091 0.0009 
1972 14 0.318 180.1 2.256 1.079 0.079 0.0062 0.0005 
1950 15 0.341 160.3 2.205 1.054 0.054 0.0030 0.0002 
1967 16 0.364 155.2 2.191 1.048 0.048 0.0023 0.0001 
1965 17 0.386 153.8 2.187 1.046 0.046 0.0021 0.0001 
1957 18 0.409 146.7 2.166 1.036 0.036 0.0013 0.0000 
1953 19 0.432 140.5 2.148 1.027 0.027 0.0007 0.0000 
1979 20 0.455 134.5 2.129 1.018 0.018 0.0003 0.0000 
1977 21 0.477 130.8 2.117 1.012 0.012 0.0001 0.0000 
1975 22 0.500 117.0 2.068 0.989 -0.011 0.0001 0.0000 
1962 23 0.523 112.1 2.050 0.980 -0.020 0.0004 0.0000 
1945 24 0.545 100.3 2.001 0.957 -0.043 0.0019 -0.0001 
1970 25 0.568 95.2 1.978 0.946 -0.054 0.0029 -0.0002 
1959 26 0.591 94.9 1.977 0.945 -0.055 0.0030 -0.0002 
1960 27 0.614 90.6 1.957 0.936 -0.064 0.0041 -0.0003 
1961 28 0.636 86.4 1.936 0.926 -0.074 0.0055 -0.0004 
1971 29 0.659 83.5 1.922 0.919 -0.081 0.0066 -0.0005 
1969 30 0.682 77.3 1.888 0.903 -0.097 0.0094 -0.0009 
1940 31 0.705 71.9 1.857 0.888 -0.112 0.0126 -0.0014 
1966 32 0.727 61.2 1.787 0.854 -0.146 0.0212 -0.0031 
1951 33 0.750 60.9 1.785 0.853 -0.147 0.0215 -0.0032 
1964 34 0.773 60.6 1.783 0.852 -0.148 0.0218 -0.0032 
1948 35 0.795 58.1 1.764 0.843 -0.157 0.0245 -0.0038 
1944 36 0.818 56.6 1.753 0.838 -0.162 0.0261 -0.0042 
1980 37 0.841 56.1 1.749 0.836 -0.164 0.0268 -0.0044 
1956 38 0.864 49.6 1.695 0.811 -0.189 0.0359 -0.0068 
1947 39 0.886 41.6 1.619 0.774 -0.226 0.0509 -0.0115 
1955 40 0.909 34.0 1.531 0.732 -0.268 0.0717 -0.0192 
1963 41 0.932 25.2 1.401 0.670 -0.330 0.1088 -0.0359 
1954 42 0.955 24.5 1.389 0.664 -0.336 0.1127 -0.0378 
1952 43 0.977 22.7 1.355 0.648 -0.352 0.1239 -0.0436 

Total  8,040.3 89.92   1.992 0.06321 
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Table 4.11. Frequency Analysis Computations for the Log-Normal Distribution:  
Medina River (Continued) 

 (b) CU Units 

Year Rank 
Plotting 

Probability 

Annual 
Max.(x) 
(ft3/s) Y = Log(X) Y/Ȳ [(Y/Ȳ)-1] [(Y/Ȳ)-1]2 [(Y/Ȳ)-1]3 

1973 1 0.023 31,900 4.504 1.238 0.238 0.0565 0.0134 
1946 2 0.045 31,800 4.502 1.237 0.237 0.0563 0.0133 
1942 3 0.068 17,500 4.243 1.166 0.166 0.0275 0.0046 
1949 4 0.091 17,400 4.241 1.165 0.165 0.0273 0.0045 
1981 5 0.114 14,500 4.161 1.144 0.144 0.0206 0.0030 
1968 6 0.136 13,100 4.117 1.131 0.131 0.0173 0.0023 
1943 7 0.159 12,100 4.083 1.122 0.122 0.0149 0.0018 
1974 8 0.182 9,680 3.986 1.095 0.095 0.0091 0.0009 
1978 9 0.205 9,440 3.975 1.092 0.092 0.0085 0.0008 
1958 10 0.227 9,220 3.965 1.089 0.089 0.0080 0.0007 
1982 11 0.250 8,160 3.912 1.075 0.075 0.0056 0.0004 
1976 12 0.273 7,510 3.876 1.065 0.065 0.0042 0.0003 
1941 13 0.295 6,890 3.838 1.055 0.055 0.0030 0.0002 
1972 14 0.318 6,360 3.803 1.045 0.045 0.0020 0.0001 
1950 15 0.341 5,660 3.753 1.031 0.031 0.0010 0.0000 
1967 16 0.364 5,480 3.739 1.027 0.027 0.0007 0.0000 
1965 17 0.386 5,430 3.735 1.026 0.026 0.0007 0.0000 
1957 18 0.409 5,180 3.714 1.021 0.021 0.0004 0.0000 
1953 19 0.432 4,960 3.695 1.015 0.015 0.0002 0.0000 
1979 20 0.455 4,750 3.677 1.010 0.010 0.0001 0.0000 
1977 21 0.477 4,620 3.665 1.007 0.007 0.0000 0.0000 
1975 22 0.500 4,130 3.616 0.994 -0.006 0.0000 0.0000 
1962 23 0.523 3,960 3.598 0.989 -0.011 0.0001 0.0000 
1945 24 0.545 3,540 3.549 0.975 -0.025 0.0006 0.0000 
1970 25 0.568 3,360 3.526 0.969 -0.031 0.0010 0.0000 
1959 26 0.591 3,350 3.525 0.969 -0.031 0.0010 0.0000 
1960 27 0.614 3,200 3.505 0.963 -0.037 0.0014 0.0000 
1961 28 0.636 3,050 3.484 0.957 -0.043 0.0018 -0.0001 
1971 29 0.659 2,950 3.470 0.953 -0.047 0.0022 -0.0001 
1969 30 0.682 2,730 3.436 0.944 -0.056 0.0031 -0.0002 
1940 31 0.705 2,540 3.405 0.936 -0.064 0.0041 -0.0003 
1966 32 0.727 2,160 3.334 0.916 -0.084 0.0070 -0.0006 
1951 33 0.750 2,150 3.332 0.916 -0.084 0.0071 -0.0006 
1964 34 0.773 2,140 3.330 0.915 -0.085 0.0072 -0.0006 
1948 35 0.795 2,050 3.312 0.910 -0.090 0.0081 -0.0007 
1944 36 0.818 2,000 3.301 0.907 -0.093 0.0086 -0.0008 
1980 37 0.841 1,980 3.297 0.906 -0.094 0.0089 -0.0008 
1956 38 0.864 1,750 3.243 0.891 -0.109 0.0118 -0.0013 
1947 39 0.886 1,470 3.167 0.870 -0.130 0.0168 -0.0022 
1955 40 0.909 1,200 3.079 0.846 -0.154 0.0237 -0.0036 
1963 41 0.932 890 2.949 0.810 -0.190 0.0359 -0.0068 
1954 42 0.955 865 2.937 0.807 -0.193 0.0372 -0.0072 
1952 43 0.977 801 2.903 0.798 -0.202 0.0409 -0.0083 

Total  283,906 156.48   0.492 0.0121 
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4.3.3 Gumbel Extreme Value Distribution 
The Gumbel extreme value distribution, sometimes called the double-exponential distribution of 
extreme values, can also be used to describe the distribution of hydrologic variables, especially 
peak discharges. It is based upon the assumption that the cumulative frequency distribution of 
the largest values of samples drawn from a large population can be described by the following 
equation: 
 

 e = F(X) e )- (X- βα  (4.33) 
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Figure 4.13. Log-normal distribution frequency curve (solid line) and one-sided upper 
confidence interval (dashed line) 
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where, 

 
S
281.1 = α   (4.33a) 

 
 S 0.450 - X = β  (4.33b) 
  
In a manner analogous to that of the normal distribution, values of the distribution function can 
be computed from Equation 4.33. Frequency factor values K are tabulated for convenience in 
Table 4.12 for use in Equation 4.26.  
 

 
Table 4.12. Frequency Factors (K) for the Gumbel Extreme 

Value Distribution 
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Characteristics of the Gumbel extreme-value distribution are that the mean flow, X̄, occurs at 
the return period of Tr = 2.33 years and that it has a positive skew (i.e., it is skewed toward the 
high flows or extreme values). 
 
As was the case with the two previous distributions, special probability scales have been 
developed so that sample data, if they are distributed according to Equation 4.33, will plot as a 
straight line. Most USGS offices have prepared forms with these axis on which the horizontal 
scale has been transformed by the double-logarithmic transform of Equation 4.33. 
 
Example 4.8. Peak flow data for the Medina River can be fit with a Gumbel distribution using 
Equation 4.26 and values of K from Table 4.12. The mean and standard deviation were 
calculated earlier as 187.0 m3 /s (6,602 ft3 /s) and 200.4 m3 /s (7,074 ft3 /s), respectively. The 
10-year flood computed from the Gumbel distribution is:  
 

 
Variable Value in SI Value in CU 

KS + X X 10 =  187.0 + 1.486 (200.4) = 485 m3 /s  6,602 + 1.486 (7,074) = 17,100 ft3 /s  

 
 

and the 100-year flood is: 
 

 
Variable Value in SI Value in CU 

 KS + X =X 100  187.0 + 3.534 (200.4) = 895 m3 /s  6,602 + 3.534 (7,074) = 31,600 ft3 /s  

 
 
Plotted on the Gumbel graph in Figure 4.14 are the actual flood data and the computed 
frequency curve.  
 
Although the Gumbel distribution is skewed positively, it does not account directly for the 
computed skew of the data, but does predict the high flows reasonably well. However, the entire 
curve fit is not much better than that obtained with the normal distribution, indicating this peak 
flow series is not distributed according to the double-exponential distribution of Equation 4.33.  
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4.3.4 Log-Pearson Type III Distribution 
Another distribution that has found wide application in hydrologic analysis is the log-Pearson 
Type III distribution. The log-Pearson Type III distribution is a three-parameter gamma 
distribution with a logarithmic transform of the variable. It is widely used for flood analyses 
because the data quite frequently fit the assumed population. It is this flexibility that led the 
Interagency Advisory Committee on Water Data to recommend its use as the standard 
distribution for flood frequency studies by all U.S. Government agencies. Thomas (1985) 
describes the motivation for adopting the log-Pearson Type III distribution and the events 
leading up to USGS Bulletin 17B (1982). 
 
The log-Pearson Type III distribution differs from most of the distributions discussed above in 
that three parameters (mean, standard deviation, and coefficient of skew) are necessary to 
describe the distribution. By judicious selection of these three parameters, it is possible to fit just 
about any shape of distribution. An extensive treatment on the use of this distribution in the 
determination of flood frequency distributions is presented in USGS Bulletin 17B, "Guidelines for 
Determining Flood Frequency" by the Interagency Advisory Committee on Water Data, revised 
March 1982. The Bulletin 17B procedure assumes the logarithms of the annual peak flows are 
Pearson Type III distributed rather than assuming the untransformed data are log-Pearson Type 
III. Kite (1988) has a good description of the two approaches. 
 
An abbreviated table of the log-Pearson Type III distribution function is given in Table 4.13. 
(Extensive tables that reduce the amount of interpolation can be found in USGS Bulletin 17B, 
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Figure 4.14. Gumbel extreme value distribution frequency curve, Medina River 
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1982.) Using the mean, standard deviation, and skew coefficient for any set of log-transformed 
annual peak flow data, in conjunction with Table 4.13, the flood with any exceedence frequency 
can be computed from the equation: 
 

 yKS+ Y =  Xlog = Ŷ  (4.34) 
 
where Ŷ is the predicted value of log X, Ȳ and Sy are as previously defined, and K is a function 
of the exceedence probability and the coefficient of skew. 
 
Again, it would be possible to develop special probability scales, so that the log-Pearson Type 
III distribution would plot as a straight line. However, the log-Pearson Type III distribution can 
assume a variety of shapes so that a separate probability scale would be required for each 
different shape. Since this is impractical, log-Pearson Type III distributions are usually plotted on 
log-normal probability scales even though the plotted frequency distribution may not be a 
straight line. It is a straight line only when the skew of the logarithms is zero.  

4.3.4.1 Procedure 
The procedure for fitting the log-Pearson Type III distribution is similar to that for the normal and 
log-normal. The specific steps for making a basic log-Pearson Type III analysis without any of 
the optional adjustments are as follows: 
 
1. Make a logarithmic transform of all flows in the series (Yi = log Xi). 
 
2. Compute the mean (Ȳ), standard deviation (Sy), and standardized skew (G) of the 

logarithms using Equations 4.12, 4.13, and 4.15, respectively. Round the skew to the 
nearest tenth (e.g., 0.32 is rounded to 0.3). 

 
3. Since the log-Pearson Type III curve with a nonzero skew does not plot as a straight line, it 

is necessary to use more than two points to draw the curve. The curvature of the line will 
increase as the absolute value of the skew increases, so more points will be needed for 
larger skew magnitudes.  

 
4. Compute the logarithmic valueŶ for each exceedence frequency using Equation 4.34. 

 
 
5. Transform the computed values of step 4 to discharges using equation 4.35:   
 

 Ŷ10= X̂       (4.35)  
 
in which X

)
 is the computed discharge for the assumed log-Pearson Type III population. 

 
6. Plot the points of step 5 on logarithmic probability paper and draw a smooth curve through 

the points. 
 
The sample data can be plotted on the paper using a plotting position formula to obtain the 
exceedence probability. The computed curve can then be verified, and, if acceptable, it can be 
used to make estimates of either a flood probability or flood magnitude. 
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4.3.4.2 Estimation 
In addition to graphical estimation, estimates can be made with the mathematical model of 
Equation 4.34. To compute a magnitude for a given probability, the procedure is the same as 
that in steps 3 to 5 above. To estimate the probability for a given magnitude X, the value is 
transformed using the logarithm (Y = log X) and then Equation 4.34 is algebraically transformed 
to compute K: 
 

 
S

Y - Y = K
y

 (4.36)  

 
The computed value of K should be compared to the K values of Table 4.13 for the 
standardized skew and a value of the probability interpolated from the probability values on 
Table 4.13; linear interpolation is acceptable. 
 
Example 4.9. The log-Pearson Type III distribution will be illustrated using the Medina River 
flood data (Table 4.11). Three cases will be computed:  station skew, generalized skew, and 
weighted skew. Table 4.13 and Equation 4.34 are used to compute values of the log-Pearson 
Type III distribution for the 10- and 100-year flood using the parameters, Ȳ, Sy, and G for the 
Medina River flood data. (To help define the distribution, the 2-, 5-, 25-, and 50-year floods have 
also been computed in Table 4.14.)  Rounding the station skew of 0.236 to 0.2, the log-Pearson 
Type III distribution estimates of the 100- and 10-year floods are 1,160 m3 /s (41,000 ft3 /s) and 
402 m3 /s (14,200 ft3 /s), respectively. The log-Pearson Type III distribution (G = 0.2) and the 
actual data from Table 4.11 are plotted in Figure 4.15 on log-normal probability scales. 
 
The generalized skew coefficient for the Medina River is -0.252, which can be rounded to -0.3. 
Using this option, the 10- and 100-year floods for the Medina River are estimated as shown in 
Table 4.15. This log-Pearson Type III distribution (generalized skew coefficient, Ḡ = -0.3) is also 
plotted on Figure 4.15. 
 
To illustrate the use of weighted skew, the station and generalized skews have already been 
determined to be G = 0.236 and Ḡ = -0.252, respectively. The mean-square error of Ḡ, MSEḠ, is 
0.302 and from Equation 4.17, MSEG = 0.136. From Equation 4.16, the weighted skew is: 
 

0.084 = 
0.136 + 0.302

0.252)0.136(+6)0.302(0.23 = G w
−

 

 
which is rounded to 0.1 when obtaining values from Table 4.13. Values for selected return 
periods are given in Table 4.16. 
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Table 4.13. Frequency Factors (K) for the Log-Pearson Type III Distribution 

 Skew 

Prob. -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 
0.9999 -8.21034 -7.98888 -7.76632 -7.54272 -7.31818 -7.09277 -6.86661 
0.9995 -6.60090 -6.44251 -6.28285 -6.12196 -5.95990 -5.79673 -5.63252 
0.9990 -5.90776 -5.77549 -5.64190 -5.50701 -5.37087 -5.23353 -5.09505 
0.9980 -5.21461 -5.10768 -4.99937 -4.88971 -4.77875 -4.66651 -4.55304 
0.9950 -4.29832 -4.22336 -4.14700 -4.06926 -3.99016 -3.90973 -3.82798 
0.9900 -3.60517 -3.55295 -3.49935 -3.44438 -3.38804 -3.33035 -3.27134 
0.9800 -2.91202 -2.88091 -2.84848 -2.81472 -2.77964 -2.74325 -2.70556 
0.9750 -2.68888 -2.66413 -2.63810 -2.61076 -2.58214 -2.55222 -2.52102 
0.9600 -2.21888 -2.20670 -2.19332 -2.17873 -2.16293 -2.14591 -2.12768 
0.9500 -1.99573 -1.98906 -1.98124 -1.97227 -1.96213 -1.95083 -1.93836 
0.9000 -1.30259 -1.31054 -1.31760 -1.32376 -1.32900 -1.33330 -1.33665 
0.8000 -0.60944 -0.62662 -0.64335 -0.65959 -0.67532 -0.69050 -0.70512 
0.7000 -0.20397 -0.22250 -0.24094 -0.25925 -0.27740 -0.29535 -0.31307 
0.6000 0.08371 0.06718 0.05040 0.03344 0.01631 -0.00092 -0.01824 
0.5704 0.15516 0.13964 0.12381 0.10769 0.09132 0.07476 0.05803 
0.5000 0.30685 0.29443 0.28150 0.26808 0.25422 0.23996 0.22535 
0.4296 0.43854 0.43008 0.42095 0.41116 0.40075 0.38977 0.37824 
0.4000 0.48917 0.48265 0.47538 0.46739 0.45873 0.44942 0.43949 
0.3000 0.64333 0.64453 0.64488 0.64436 0.64300 0.64080 0.63779 
0.2000 0.77686 0.78816 0.79868 0.80837 0.81720 0.82516 0.83223 
0.1000 0.89464 0.91988 0.94496 0.96977 0.99418 1.01810 1.04144 
0.0500 0.94871 0.98381 1.01973 1.05631 1.09338 1.13075 1.16827 
0.0400 0.95918 0.99672 1.03543 1.07513 1.11566 1.15682 1.19842 
0.0250 0.97468 1.01640 1.06001 1.10537 1.15229 1.20059 1.25004 
0.0200 0.97980 1.02311 1.06864 1.11628 1.16584 1.21716 1.26999 
0.0100 0.98995 1.03695 1.08711 1.14042 1.19680 1.25611 1.31815 
0.0050 0.99499 1.04427 1.09749 1.15477 1.21618 1.28167 1.35114 
0.0020 0.99800 1.04898 1.10465 1.16534 1.23132 1.30279 1.37981 
0.0010 0.99900 1.05068 1.10743 1.16974 1.23805 1.31275 1.39408 
0.0005 0.99950 1.05159 1.10901 1.17240 1.24235 1.31944 1.40413 
0.0001 0.99990 1.05239 1.11054 1.17520 1.24728 1.32774 1.41753 
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Table 4.13. Frequency Factors (K) for the Log-Pearson Type III Distribution 

(Cont'd) 

 Skew 
Prob. -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 
0.9999 -6.63980 -6.41249 -6.18480 -5.95691 -5.72899 -5.50124 -5.27389 

0.9995 -5.46735 -5.30130 -5.13449 -4.96701 -4.79899 -4.63057 -4.46189 
0.9990 -4.95549 -4.81492 -4.67344 -4.53112 -4.38807 -4.24439 -4.10022 
0.9980 -4.43839 -4.32263 -4.20582 -4.08802 -3.96932 -3.84981 -3.72957 
0.9950 -3.74497 -3.66073 -3.57530 -3.48874 -3.40109 -3.31243 -3.22281 
0.9900 -3.21103 -3.14944 -3.08660 -3.02256 -2.95735 -2.89101 -2.82359 
0.9800 -2.66657 -2.62631 -2.58480 -2.54206 -2.49811 -2.45298 -2.40670 
0.9750 -2.48855 -2.45482 -2.41984 -2.38364 -2.34623 -2.30764 -2.26790 
0.9600 -2.10823 -2.08758 -2.06573 -2.04269 -2.01848 -1.99311 -1.96660 
0.9500 -1.92472 -1.90992 -1.89395 -1.87683 -1.85856 -1.83916 -1.81864 
0.9000 -1.33904 -1.34047 -1.34092 -1.34039 -1.33889 -1.33640 -1.33294 
0.8000 -0.71915 -0.73257 -0.74537 -0.75752 -0.76902 -0.77986 -0.79002 
0.7000 -0.33054 -0.34772 -0.36458 -0.38111 -0.39729 -0.41309 -0.42851 
0.6000 -0.03560 -0.05297 -0.07032 -0.08763 -0.10486 -0.12199 -0.13901 
0.5704 0.04116 0.02421 0.00719 -0.00987 -0.02693 -0.04397 -0.06097 
0.5000 0.21040 0.19517 0.17968 0.16397 0.14807 0.13199 0.11578 
0.4296 0.36620 0.35370 0.34075 0.32740 0.31368 0.29961 0.28516 
0.4000 0.42899 0.41794 0.40638 0.39434 0.38186 0.36889 0.35565 
0.3000 0.63400 0.62944 0.62415 0.61815 0.61146 0.60412 0.59615 
0.2000 0.83841 0.84369 0.84809 0.85161 0.85426 0.85607 0.85703 
0.1000 1.06413 1.08608 1.10726 1.12762 1.14712 1.16574 1.18347 
0.0500 1.20578 1.24313 1.28019 1.31684 1.35299 1.38855 1.42345 
0.0400  1.24028 1.28225 1.32414 1.36584 1.40720 1.44813 1.48852 
0.0250 1.30042 1.35153 1.40314 1.45507 1.50712 1.55914 1.61099 
0.0200 1.32412 1.37929 1.43529 1.49188 1.54886 1.60604 1.66325 
0.0100 1.38267 1.44942 1.51808 1.58838 1.66001 1.73271 1.80621 
0.0050 1.42439 1.50114 1.58110 1.66390 1.74919 1.83660 1.92580 
0.0020 1.46232 1.55016 1.64305 1.74062 1.84244 1.94806 2.05701 
0.0010 1.48216 1.57695 1.67825 1.78572 1.89894 2.01739 2.14053 
0.0005 1.49673 1.59738 1.70603 1.82241 1.94611 2.07661 2.21328 
0.0001 1.51752 1.62838 1.75053 1.88410 2.02891 2.18448 2.35015 
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Table 4.13. Frequency Factors (K) for the Log-Pearson Type III Distribution 

(Cont'd) 

 Skew 
Prob. -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 

 0.9999 -5.04718 -4.82141 -4.59687 -4.37394 -4.15301 -3.93453 -3.71902 
 0.9995 -4.29311 -4.12443 -3.95605 -3.78820 -3.62113 -3.45513 -3.29053 
 0.9990 -3.95567 -3.81090 -3.66608 -3.52139 -3.37703 -3.23322 -3.09023 
 0.9980 -3.60872 -3.48737 -3.36566 -3.24371 -3.12169 -2.99978 -2.87816 
 0.9950 -3.13232 -3.04102 -2.94900 -2.85636 -2.76321 -2.66965 -2.57583 
 0.9900 -2.75514 -2.68572 -2.61539 -2.54421 -2.47226 -2.39961 -2.32635 
 0.9800 -2.35931 -2.31084 -2.26133 -2.21081 -2.15935 -2.10697 -2.05375 
 0.9750 -2.22702 -2.18505 -2.14202 -2.09795 -2.05290 -2.00688 -1.95996 
 0.9600 -1.93896 -1.91022 -1.88039 -1.84949 -1.81756 -1.78462 -1.75069 
 0.9500 -1.79701 -1.77428 -1.75048 -1.72562 -1.69971 -1.67279 -1.64485 
 0.9000 -1.32850 -1.32309 -1.31671 -1.30936 -1.30105 -1.29178 -1.28155 
 0.8000 -0.79950 -0.80829 -0.81638 -0.82377 -0.83044 -0.83639 -0.84162 
 0.7000 -0.44352 -0.45812 -0.47228 -0.48600 -0.49927 -0.51207 -0.52440 
 0.6000 -0.15589 -0.17261 -0.18916 -0.20552 -0.22168 -0.23763 -0.25335 
 0.5704 -0.07791 -0.09178 -0.11154 -0.12820 -0.14472 -0.16111 -0.17733 
 0.5000 0.09945 0.08302 0.06651 0.04993 0.03325 0.01662 0.00000 
 0.4296 0.27047 0.25558 0.24037 0.22492 0.20925 0.19339 0.17733 
 0.4000 0.34198 0.32796 0.31362 0.29897 0.28403 0.26882  0.25335 
 0.3000 0.58757 0.57840 0.56867 0.55839 0.54757 0.53624 0.52440 
 0.2000 0.85718 0.85653 0.85508 0.85285 0.84986 0.84611 0.84162 
 0.1000 1.20028 1.21618 1.23114 1.24516 1.25824 1.27037 1.28155 
 0.0500 1.45762 1.49101 1.52357 1.55527 1.58607 1.61594 1.64485 
 0.0400 1.52830 1.56740 1.60574 1.64329 1.67999 1.71580 1.75069 
 0.0250 1.66253 1.71366 1.76427 1.81427 1.86360 1.91219 1.95996 
 0.0200 1.72033 1.77716 1.83361 1.88959 1.94499 1.99973 2.05375 
 0.0100 1.88029 1.95472 2.02933 2.10394 2.17840 2.25258 2.32635 
 0.0050 2.01644 2.10825 2.20092 2.29423 2.38795 2.48187 2.57583 
 0.0020 2.16884 2.28311 2.39942 2.51741 2.63672 2.75706 2.87816 
 0.0010 2.26780 2.39867 2.53261 2.66915 2.80786 2.94834 3.09023 
 0.0005 2.35549 2.50257 2.65390 2.80889 2.96698 3.12767 3.29053 
 0.0001 2.52507 2.70836 2.89907 3.09631 3.29921 3.50703 3.71902 
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Table 4.13. Frequency Factors (K) for the Log-Pearson Type III Distribution 

(Cont'd) 

 Skew 
Prob. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

 0.9999 -3.50703 -3.29921 -3.09631 -2.89907 -2.70836 -2.52507 -2.35015 
 0.9995 -3.12767 -2.96698 -2.80889 -2.65390 -2.50257 -2.35549 -2.21328 
 0.9990 -2.94834 -2.80786 -2.66915 -2.53261 -2.39867 -2.26780 -2.14053 
 0.9980 -2.75706 -2.63672 -2.51741 -2.39942 -2.28311 -2.16884 -2.05701 
 0.9950 -2.48187 -2.38795 -2.29423 -2.20092 -2.10825 -2.01644 -1.92580 
 0.9900 -2.25258 -2.17840 -2.10394 -2.02933 -1.95472 -1.88029 -1.80621 
 0.9800 -1.99973 -1.94499 -1.88959 -1.83361 -1.77716 -1.72033 -1.66325 
 0.9750 -1.91219 -1.86360 -1.81427 -1.76427 -1.71366 -1.66253 -1.61099 
 0.9600 -1.71580 -1.67999 -1.64329 -1.60574 -1.56740 -1.52830 -1.48852 
 0.9500 -1.61594 -1.58607 -1.55527 -1.52357 -1.49101 -1.45762 -1.42345 
 0.9000 -1.27037 -1.25824 -1.24516 -1.23114 -1.21618 -1.20028 -1.18347 
 0.8000 -0.84611 -0.84986 -0.85285 -0.85508 -0.85653 -0.85718 -0.85703 
 0.7000 -0.53624 -0.54757 -0.55839 -0.56867 -0.57840 -0.58757 -0.59615 
 0.6000 -0.26882 -0.28403 -0.29897 -0.31362 -0.32796 -0.34198 -0.35565 
 0.5704 -0.19339 -0.20925 -0.22492 -0.24037 -0.25558 -0.27047 -0.28516 
 0.5000 -0.01662 -0.03325 -0.04993 -0.06651 -0.08302 -0.09945 -0.11578 
 0.4296 0.16111 0.14472 0.12820 0.11154 0.09478 0.07791 0.06097 
 0.4000 0.23763 0.22168 0.20552 0.18916 0.17261 0.15589 0.13901 
 0.3000 0.51207 0.49927 0.48600 0.47228 0.45812 0.44352 0.42851 
 0.2000 0.83639 0.83044 0.82377 0.81638 0.80829 0.79950 0.79002 
 0.1000 1.29178 1.30105 1.30936 1.31671 1.32309 1.32850 1.33294 
 0.0500 1.67279 1.69971 1.72562 1.75048 1.77428 1.79701 1.81864 
 0.0400 1.78462 1.81756 1.84949 1.88039 1.91022 1.93896 1.96660 
 0.0250 2.00688 2.05290 2.09795 2.14202 2.18505 2.22702 2.26790 
 0.0200 2.10697 2.15935 2.21081 2.26133 2.31084 2.35931 2.40670 
 0.0100 2.39961 2.47226 2.54421 2.61539 2.68572 2.75514 2.82359 
 0.0050 2.66965 2.76321 2.85636 2.94900 3.04102 3.13232 3.22281 
 0.0020 2.99978 3.12169 3.24371 3.36566 3.48737 3.60872 3.72957 
 0.0010 3.23322 3.37703 3.52139 3.66608 3.81090 3.95567 4.10022 
 0.0005 3.45513 3.62113 3.78820 3.95605 4.12443 4.29311 4.46189 
 0.0001 3.93453 4.15301 4.37394 4.59687 4.82141 5.04718 5.27389 
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Table 4.13. Frequency Factors (K) for the Log-Pearson Type III Distribution 

(Cont'd) 

 Skew 
Prob. 0.8 0.9 1.0 1.1 1.2 1.3 1.4 
0.9999 2.18448 -2.02891 -1.88410 -1.75053 -1.62838 -1.51752 -1.41753
0.9995 -2.07661 -1.94611 -1.82241 -1.70603 -1.59738 -1.49673 -1.40413
0.9990 -2.01739 -1.89894 -1.78572 -1.67825 -1.57695 -1.48216 -1.39408
0.9980 -1.94806 -1.84244 -1.74062 -1.64305 -1.55016 -1.46232 -1.37981
0.9950 -1.83660 -1.74919 -1.66390 -1.58110 -1.50114 -1.42439 -1.35114
0.9900 -1.73271 -1.66001 -1.58838 -1.51808 -1.44942 -1.38267 -1.31815
0.9800 -1.60604 -1.54886 -1.49188 -1.43529 -1.37929 -1.32412 -1.26999
0.9750 -1.55914 -1.50712 -1.45507 -1.40314 -1.35153 -1.30042 -1.25004
0.9600 -1.44813 -1.40720 -1.36584 -1.32414 -1.28225 -1.24028 -1.19842
0.9500 -1.38855 -1.35299 -1.31684 -1.28019 -1.24313 -1.20578 -1.16827
0.9000 -1.16574 -1.14712 -1.12762 -1.10726 -1.08608 -1.06413 -1.04144
0.8000 -0.85607 -0.85426 -0.85161 -0.84809 -0.84369 -0.83841 -0.83223
0.7000 -0.60412 -0.61146 -0.61815 -0.62415 -0.62944 -0.63400 -0.63779
0.6000 -0.36889 -0.38186 -0.39434 -0.40638 -0.41794 -0.42899 -0.43949
0.5704 -0.29961 -0.31368 -0.32740 -0.34075 -0.35370 -0.36620 -0.37824
0.5000 -0.13199 -0.14807 -0.16397 -0.17968 -0.19517 -0.21040 -0.22535
0.4296 0.04397 0.02693 0.00987 -0.00719 -0.02421 -0.04116 -0.05803
0.4000 0.12199 0.10486 0.08763 0.07032 0.05297 0.03560 0.01824
0.3000 0.41309 0.39729 0.38111 0.36458 0.34772 0.33054 0.31307
0.2000 0.77986 0.76902 0.75752 0.74537 0.73257 0.71915 0.70512
0.1000 1.33640 1.33889 1.34039 1.34092 1.34047 1.33904 1.33665
0.0500 1.83916 1.85856 1.87683 1.89395 1.90992 1.92472 1.93836
0.0400 1.99311 2.01848 2.04269 2.06573 2.08758 2.10823 2.12768
0.0250 2.30764 2.34623 2.38364 2.41984 2.45482 2.48855 2.52102
0.0200 2.45298 2.49811 2.54206 2.58480 2.62631 2.66657 2.70556
0.0100 2.89101 2.95735 3.02256 3.08660 3.14944 3.21103 3.27134
0.0050 3.31243 3.40109 3.48874 3.57530 3.66073 3.74497 3.82798
0.0020 3.84981 3.96932 4.08802 4.20582 4.32263 4.43839 4.55304
0.0010 4.24439 4.38807 4.53112 4.67344 4.81492 4.95549 5.09505
0.0005 4.63057 4.79899 4.96701 5.13449 5.30130 5.46735 5.63252
0.0001 5.50124 5.72899 5.95691 6.18480 6.41249 6.63980 6.86661

 



4-50 

 
Table 4.13. Frequency Factors (K) for the Log-Pearson Type III 

Distribution (Cont'd) 

 Skew 
Prob.    1.5       1.6      1.7      1.8      1.9       2.0    
0.9999 -1.32774 -1.24728 -1.17520 -1.11054 -1.05239 -0.99990 
0.9995 -1.31944 -1.24235 -1.17240 -1.10901 -1.05159 -0.99950 
0.9990 -1.31275 -1.23805 -1.16974 -1.10743 -1.50568 -0.99900 
0.9980 -1.30279 -1.23132 -1.16534 -1.10465 -1.04898 -0.99800 
0.9950 -1.28167 -1.21618 -1.15477 -1.09749 -1.04427 -0.99499 
0.9900 -1.25611 -1.19680 -1.14042 -1.08711 -1.03695 -0.98995 
0.9800 -1.21716 -1.16584 -1.11628 -1.06864 -1.02311 -0.97980 
0.9750 -1.20059 -1.15229 -1.10537 -1.06001 -1.01640 -0.97468 
0.9600 -1.15682 -1.11566 -1.07513 -1.03543 -0.99672 -0.95918 
0.9500 -1.13075 -1.09338 -1.05631 -1.01973 -0.98381 -0.94871 
0.9000 -1.01810 -0.99418 -0.96977 -0.94496 -0.91988 -0.89464 
0.8000 -0.82516 -0.81720 -0.80837 -0.79868 -0.78816 -0.77686 
0.7000 -0.64080 -0.64300 -0.64436 -0.64488 -0.64453 -0.64333 
0.6000 -0.44942 -0.45873 -0.46739 -0.47538 -0.48265 -0.48917 
0.5704 -0.38977 -0.40075 -0.41116 -0.42095 -0.43008 -0.43854 
0.5000 -0.23996 -0.25422 -0.26808 -0.28150 -0.29443 -0.30685 
0.4296 -0.07476 -0.09132 -0.10769 -0.12381 -0.13964 -0.15516 
0.4000 0.00092 -0.01631 -0.03344 -0.05040 -0.06718 -0.08371 
0.3000 0.29535 0.27740 0.25925 0.24094 0.22250 0.20397 
0.2000 0.69050 0.67532 0.65959 0.64335 0.62662 0.60944 
0.1000 1.33330 1.32900 1.32376 1.31760 1.31054 1.30259 
0.0500 1.95083 1.96213 1.97227 1.98124 1.98906 1.99573 
0.0400 2.14591 2.16293 2.17873 2.19332 2.20670 2.21888 
0.0250 2.55222 2.58214 2.61076 2.63810 2.66413 2.68888 
0.0200 2.74325 2.77964 2.81472 2.84848 2.88091 2.91202 
0.0100 3.33035 3.38804 3.44438 3.49935 3.55295 3.60517 
0.0050 3.90973 3.99016 4.06926 4.14700 4.22336 4.29832 
0.0020 4.66651 4.77875 4.88971 4.99937 5.10768 5.21461 
0.0010 5.23353 5.37087 5.50701 5.64190 5.77549 5.90776 
0.0005 5.79673 5.95990 6.12196 6.28285 6.44251 6.60090 
0.0001 7.09277 7.31818 7.54272 7.76632 7.98888 8.21034 
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Table 4.14. Calculation of Log-Pearson Type III Discharges for Medina River  

Using Station Skew 
SI Unit CU Unit (1) 

Return 
Period 
(yrs) 

(2) 
 

Exceedence 
Probability

(3) 
 

K 
 

(4) 
Y 

(5) 
X 

(m3/s) 

(6) 
Y 

(7) 
X 

(ft3/s) 
  2 0.50 -0.03325 2.078 120 3.626   4,230 
  5 0.20 0.83044 2.418 262 3.966   9,250 
 10 0.10 1.30105 2.604 402 4.152 14,200 
 25 0.04 1.81756 2.807 641 4.355 22,600 
 50 0.02 2.15935 2.942 875 4.490 30,900 
100 0.01 2.47226 3.065 1,160 4.613 41,000 

    (3) from Table 4.13 for G = 0.2 (rounded from 0.236) 
    (4)  K394.0091.2KSYY y +=+=      

    (5) Y10X =  
    (6) K394.0639.3KSYY y +=+=   

    (7) Y10X =  
 
 
 

 Table 4.15. Calculation of Log-Pearson Type III Discharges for Medina River  
Using Generalized Skew 

SI Unit CU Unit (1) 
Return 
Period 
(yrs) 

(2) 
 

Exceedence 
Probability

(3) 
 

K 
(4) 
Y 

(5) 
X 

(m3/s)

(6) 
Y 

(7) 
X 

(ft3/s) 
  2 0.50 0.04993 2.111 129 3.659   4,560 
  5 0.20 0.85285 2.427 267 3.975   9,440 
 10 0.10 1.24516 2.582 382 4.130 13,500 
 25 0.04 1.64329 2.738 547 4.286 19,300 
 50 0.02 1.88959 2.836 685 4.383 24,200 
100 0.01 2.10394 2.920 832 4.468 29,400 

 
(3) from Table 4.13 for G  = -0.3 (rounded from -0.252) 

    (4)  K394.0091.2KSYY y +=+=      

    (5) Y10X =  
    (6) K394.0639.3KSYY y +=+=  

(7) Y10X =  
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 Table 4.16. Calculation of Log-Pearson Type III Discharges for Medina River  
Using Weighted Skew 

SI Unit CU Unit (1) 
Return 
Period 
(yrs)  

(2) 
 

Exceedence 
probability 

(3) 
 
 

K 

(4) 
 

Y 

(5) 
 

X(m3/s) 

(6) 
 

Y 

(7) 
 

X (ft3/s) 
  2 0.50 -0.01662 2.085 121 3.632   4,290 
  5 0.20 0.83639 2.421 264 3.969   9,310 
 10 0.10 1.29178 2.600 398 4.148 14,100 
 25 0.04 1.78462 2.794 622 4.342 22,000 
 50 0.02 2.10697 2.922  836 4.469 29,400 
100 0.01 2.39961 3.036 1,090 4.584 38,400 

 
(3) from Table 4.13 for GW = 0.1 (rounded from 0.084) 

                                   (4) K394.0091.2KSYY y +=+=                                 

(5) Y10X =  
    (6)  K394.0639.3KSYY y +=+=                                 

                          (7) Y10X =    
 
 

4.3.5 Evaluation of Flood Frequency Predictions 
The peak flow data for the Medina River gage have now been analyzed by four different 
frequency distributions and, in the case of log-Pearson Type III distribution, by three different 
options of skew. The two-parameter log-normal distribution is a special case of the log-Pearson 
Type III distribution, specifically when the skew is zero. The normal and Gumbel distributions 
assume fixed skews of zero and 1.139, respectively, for the untransformed data.  
 
The log-Pearson Type III distribution, which uses three parameters, should be superior to all 
three of the two-parameter distributions discussed in this document. The predicted 10-year and 
100-year floods obtained by each of these methods are summarized in Table 4.17. There is 
considerable variation in the estimates, especially for the 100-year flood, where the values 
range from 653 m3/s (23,100 ft3 /s) to 1160 m3/s (41,000 ft3 /s).  
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The highway designer is faced with the obvious question of which is the appropriate distribution 
to use for the given set of data. Considerable insight into the nature of the distribution can be 
obtained by ordering the flood data, computing the mean, standard deviation, and coefficient of 
skew for the sample and plotting the data on standard probability scales. Based on this 
preliminary graphical analysis, as well as judgment, some standard distributions might be 
eliminated before the frequency analysis is begun. 
 
Frequently, more than one distribution or, in the case of the log-Pearson Type III, more than one 
skew option will seem to fit the data fairly well. Some quantitative measure is needed to 
determine whether one curve or distribution is better than another. Several different techniques 
have been proposed for this purpose. Two of the most common are the standard error of 
estimate and confidence limits, both of which are discussed below. 
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Figure 4.15. Log-Pearson Type III distribution frequency curve, Medina River 
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Table 4.17. Summary of 10- and 100-year Discharges  
for Selected Probability Distributions 

Estimated Flow  
SI (m3/s) Customary (ft3/s) Distribution 

10-yr 100-yr  10-yr  100-yr 
 Normal 444 653 15,700 23,100 
 Log-normal 394 1,020 13,900 35,900 
 Gumbel 485 895 17,100 31,600 
 Log-Pearson Type III     
   Station Skew (G = 0.2) 402   1,160 14,200 41,000 
   Generalized Skew (G  = -0.3) 382 832 13,500 29,400 
   Weighted Skew (GW = 0.1) 398 1,090 14,100 38,400 

 
 
 

4.3.5.1 Standard Error of Estimate 
A common measure of statistical reliability is the standard error of estimate or the root-mean 
square error. Beard (1962) gives the standard error of estimate for the mean, standard 
deviation, and coefficient of skew as: 
 

      
n
S = S   :Mean 5.0TM     (4.37) 

 

     
)n2(

S = S   :Deviation Standard 5.0TS    (4.38) 

 

   







)3n+)(1n+)(2n-(

)1n-(n6 = S  :Skew of tCoefficien
5.0

TG   (4.39) 

 
These equations show that the standard error of estimate is inversely proportional to the square 
root of the period of record. In other words, the shorter the record, the larger the standard 
errors. For example, standard errors for a short record will be approximately twice as large as 
those for a record four times as long. 
 
The standard error of estimate is actually a measure of the variance that could be expected in a 
predicted T-year event if the event were estimated from each of a very large number of equally 
good samples of equal length. Because of its critical dependence on the period of record, the 
standard error is difficult to interpret, and a large value may be a reflection of a short record.  
 
Using the Medina River annual flood series as an example, the standard errors for the 
parameters of the log-Pearson Type III computed from Equations 4.37, 4.38, and 4.39 for the 
logarithms are: 
 

STM = 0.394/(43)0.5 = 0.060 
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STS = 0.394/(2(43))0.5 = 0.0425 
 

STG = [6(43)(42)/((41)(44)(46))]0.5 = 0.361 
 
The standard error for the skew coefficient of 0.361 is relatively large. The 43-year period of 
record is statistically of insufficient length to properly evaluate the station skew, and the potential 
variability in the prediction of the 100-year flood is reflected in the standard error of estimate of 
the skew coefficient. For this reason, some hydrologists prefer confidence limits for evaluating 
the reliability of a selected frequency distribution. 

4.3.5.2   Confidence Limits 
Confidence limits are used to estimate the uncertainties associated with the determination of 
floods of specified return periods from frequency distributions. Since a given frequency 
distribution is only a sample estimate of a population, it is probable that another sample taken at 
the same location and of equal length but taken at a different time would yield a different 
frequency curve. Confidence limits, or more correctly, confidence intervals, define the range 
within which these frequency curves could be expected to fall with a specified confidence level. 
 
USGS Bulletin 17B (1982) outlines a method for developing upper and lower confidence 
intervals. The general forms of the confidence limits are: 
 
 ( ) U

c,pcp, K S + Q = QU  (4.40) 
 
and 
 ( ) L

c,pcp, K S + Q = QL  (4.41) 
 
where, 
 c = level of confidence 
 p = exceedence probability 
 Up,c(Q) = upper confidence limit corresponding to the values of p and c, for flow Q 
 Lp,c(Q) = lower confidence limit corresponding to the values of p and c, for flow Q 
 KU

p,c = upper confidence coefficient corresponding to the values of p and c 
 KL

p,c = lower confidence coefficient corresponding to the values of p and c 
 
Values of KU

p,c and KL
p,c for the normal distribution are given in Table 4.18 for the commonly 

used confidence levels of 0.05 and 0.95. USGS Bulletin 17B (1982), from which Table 4.18 was 
abstracted, contains a more extensive table covering other confidence levels. 
 
Confidence limits defined in this manner and with the values of Table 4.18 are called one-sided 
because each defines the limit on just one side of the frequency curve; for 95 percent 
confidence only one of the values should be computed. The one-sided limits can be combined 
to form a two-sided confidence interval such that the combination of 95 percent and 5 percent 
confidence limits define a two-sided 90 percent confidence interval. Practically, this means that 
at a specified exceedence probability or return period, there is a 5 percent chance the flow will 
exceed the upper confidence limit and a 5 percent chance the flow will be less than the lower 
confidence limit. Stated another way, it can be expected that, 90 percent of the time, the 
specified frequency flow will fall within the two confidence limits.  
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Table 4.18. Confidence Limit Deviate Values for Normal and Log-normal Distributions 
(from USGS Bulletin 17B, 1982) 

Exceedence Probability Confidence 
Level   

Systematic 
Record 

n 
 
0.002 

 
0.010

 
 0.020

 
 0.040

 
 0.100

 
0.200

 
0.500 

 
0.800 

 
0.990

 
0.05 

 
10 

 
4.862 

 
3.981

 
3.549

 
3.075

 
2.355

 
1.702

 
0.580 

 
-0.317 

 
-1.563 

 
 

15 
 
4.304 

 
3.520

 
3.136

 
2.713

 
2.068

 
1.482

 
0.455 

 
-0.406 

 
-1.677 

 
 

20 
 
4.033 

 
3.295

 
2.934

 
2.534

 
1.926

 
1.370

 
0.387 

 
-0.460 

 
-1.749 

 
 

25 
 
3.868 

 
3.158

 
2.809

 
2.425

 
1.838

 
1.301

 
0.342 

 
-0.497 

 
-1.801 

 
 

30 
 
3.755 

 
3.064

 
2.724

 
2.350

 
1.777

 
1.252

 
0.310 

 
-0.525 

 
-1.840 

     
 

40 
 
3.608 

 
2.941

 
2.613

 
2.251

 
1.697

 
1.188

 
0.266 

 
-0.556 

 
-1.896 

 
 

50 
 
3.515 

 
2.862

 
2.542

 
2.188

 
1.646

 
1.146

 
0.237 

 
-0.592 

 
-1.936 

 
 

60 
 
3.448 

 
2.807

 
2.492

 
2.143

 
1.609

 
1.116

 
0.216 

 
-0.612 

 
-1.966 

 
 

70 
 
3.399 

 
2.765

 
2.454

 
2.110

 
1.581

 
1.093

 
0.199 

 
-0.629 

 
-1.990 

 
 

80 
 
3.360 

 
2.733

 
2.425

 
2.083

 
1.559

 
1.076

 
0.186 

 
-0.642 

 
-2.010 

 
 

90 
 
3.328 

 
2.706

 
2.400

 
2.062

 
1.542

 
1.061

 
0.175 

 
-0.652 

 
-2.026 

 
 

100 
 
3.301 

 
2.684

 
2.380

 
2.044

 
1.527

 
1.049

 
0.166 

 
-0.662 

 
-2.040

 
0.95 

 
10 

 
1.989 

 
1.563

 
1.348

 
1.104

 
0.712

 
0.317

 
-0.580 

 
-1.702 

 
-3.981 

 
 

15 
 
2.121 

 
1.677

 
1.454

 
1.203

 
0.802

 
0.406

 
-0.455 

 
-1.482 

 
-3.520 

 
 

20 
 
2.204 

 
1.749

 
1.522

 
1.266

 
0.858

 
0.460

 
-0.387 

 
-1.370 

 
-3.295 

 
 

25 
 
2.264 

 
1.801

 
1.569

 
1.309

 
0.898

 
0.497

 
-0.342 

 
-1.301 

 
-3.158 

 
 

30 
 
2.310 

 
1.840

 
1.605

 
1.342

 
0.928

 
0.525

 
-0.310 

 
-1.252 

 
-3.064 

 
 

40 
 
2.375 

 
1.896

 
1.657

 
1.391

 
0.970

 
0.565

 
-0.266 

 
-1.188 

 
-2.941 

 
 

50 
 
2.421 

 
1.936

 
1.694

 
1.424

 
1.000

 
0.592

 
-0.237 

 
-1.146 

 
-2.862 

 
 

60 
 
2.456 

 
1.966

 
1.722

 
1.450

 
1.022

 
0.612

 
-0.216 

 
-1.116 

 
-2.807 

 
 

70 
 
2.484 

 
1.990

 
1.745

 
1.470

 
1.040

 
0.629

 
-0.199 

 
-1.093 

 
-2.765 

 
 

80 
 
2.507 

 
2.010

 
1.762

 
1.487

 
1.054

 
0.642

 
-0.186 

 
-1.076 

 
-2.733 

 
 

90 
 
2.526 

 
2.026

 
1.778

 
1.500

 
1.066

 
0.652

 
-0.175 

 
-1.061 

 
-2.706 

 
 

100 
 
2.542 

 
2.040

 
1.791

 
1.512

 
1.077

 
0.662

 
-0.166 

 
-1.049 

 
-2.684

 
 
 
When the skew is non-zero, USGS Bulletin 17B (1982) gives the following approximate 
equations for estimating values of KU

p,c and KL
p,c in terms of the value of KG,p for the given skew 

and exceedence probability: 
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( )

a
ba - K + K = K

5.02
PG,PG,U

CP,            (4.42a) 

and 

 
( )

a
ba - K  K = K

5.02
PG,PG,L

CP,
−

          (4.42b) 

where 

 
1) - (n2

Z - 1 = a
2
c           (4.42c) 

 

 
n

Z - K = b
2

c2
P,G      (4.42d)  

 
and where Zc is the standard normal deviate (zero-skew Pearson Type III deviate) with 
exceedence probability of (1-c). 
 
Confidence intervals were computed for the Medina River flood series using the USGS Bulletin 
17B (1982) procedures for both the log-normal and the log-Pearson Type III distributions. The 
weighted skew of 0.1 was used with the log-Pearson Type III analysis. The computations for the 
confidence intervals are given in Tables 4.19 (log-normal) and 4.20 (log-Pearson Type III). The 
confidence intervals for the log-normal and log-Pearson Type III are shown in Figures 4.13 and 
4.15, respectively.  
 
It appears that a log-Pearson Type III would be the most acceptable distribution for the Medina 
River data. The actual data follow the distribution very well, and all the data fall within the 
confidence intervals. Based on this analysis, the log-Pearson Type III would be the preferred 
standard distribution with the log-normal also acceptable. The normal and Gumbel distributions 
are unsatisfactory for this particular set of data.  
 
 
 Table 4.19. Computation of One-sided, 95 Percent Confidence Interval for the Log-

normal Analysis of the Medina River Annual Maximum Series 
SI CU 

(1)  (2) (3)  (4) (5) (6) (7) (8) (9) 
Return 
Period 
(yrs) 

Exceedence 
Probability Ku U 

Xu 
(m3/s)

X 
(m3/s) U 

Xu  
(ft3/s) 

X   
(ft3/s) 

    2 0.5 0.2573 2.192   156  123 3.740 5,500  4,360 
    5 0.2 1.1754 2.554   358  265 4.102  12,600  9,350 
   10 0.1 1.6817 2.754   568  394 4.302  20,000 13,900 
   25 0.04 2.2321 2.970   935  604 4.518  33,000 21,300 
   50 0.02 2.5917 3.112 1,300  795 4.660  45,700 28,100 
  100 0.01 2.9173 3.241 1,740 1,020 4.788  61,400 35,900 
  500 0.002 3.5801 3.502 3,180 1,680 5.050 112,200 59,300 

 
(3) interpolated from Table 4.18 for a record length of 43 years 
(4) U = Y + Sy KU =2.091+0.394 KU  
(5) XU = 10U  
(6) estimated using Equations 4.29 and 4.30 
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(7) U = Y + Sy KU =3.639+0.394 KU 
(8) XU = 10U 
(9) estimated using Equations 4.29 and 4.30 

 
Table 4.20. Computation of One-sided, 95 Percent Confidence Interval  

for the Log-Pearson Type III Analysis of the Medina River Annual Maximum Series  
with Weighted Skew 

SI CU 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Return 
Period 
  (yrs)  

Exceedence 
Probability K b KU U 

XU 

(m3/s) 
X 

(m3/s) U 
XU 

(ft3/s) 
X 

(ft3/s)
  2   0.5 -0.01662 -0.0627 0.2378 2.185  153  121 3.733 5,410 4,290
  5   0.2 0.83639  0.6366 1.1627 2.549  354  264 4.097 12,500 9,310
 10   0.1 1.29178  1.6058 1.6847 2.755  569  398 4.303 20,090 14,060
 25   0.04  1.78462  3.1219 2.2618 2.982  959  622 4.530 33,880 21,980
 50   0.02  2.10697  4.3764 2.6437 3.133 1,360  834 4.681 47,970 29,440
100   0.01  2.39961  5.6952 2.9924 3.270 1,860 1,090 4.818 65,770 38,370
500 0.002 2.99978  8.9357 3.7116 3.553 3,570 1,870 5.101 126,180 66,220

 
(3) from Table 4.13 for skew G = 0.1 
 
(4) from Equation 4.42d 

06293.0 - K = 
43

)645.1( - K = 
n
Z - Kb = 2

2
2

2
c2  

(5) from Equation 4.42a 

96779.0
)b 96779.0K(K

a
)abK(KK

5.025.02
U −+

=
−+

=  

   (6) from Equation 4.40 
UU

Y K394.0091.2KSYU +=+=  
 

(7) from Equation 4.35 
10= X UU  

 
   (8) from Table 4.16 
 
   (9) from Equation 4.40 
       UU

Y K394.0639.3KSYU +=+=  
 
   (10) from Equation 4.35 
                                       10= X UU  
 
                      (11) from Table 4.16 
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4.3.6 Other Considerations in Frequency Analysis 
In the course of performing frequency analyses for various watersheds, the designer will 
undoubtedly encounter situations where further adjustments to the data are indicated. Additional 
analysis may be necessary due to outliers, inclusion of historical data, incomplete records or 
years with zero flow, and mixed populations. Some of the more common methods of analysis 
are discussed in the following paragraphs.  

4.3.6.1 Outliers 
Outliers, which may be found at either or both ends of a frequency distribution, are measured 
values that occur, but appear to be from a longer sample or different population. This is 
reflected when one or more data points do not follow the trend of the remaining data. 
 
USGS Bulletin 17B (1982) presents criteria based on a one-sided test to detect outliers at a 10 
percent significance level. If the station skew is greater than 0.4, tests are applied for high 
outliers first, and, if less than -0.4, low outliers are considered first. If the station skew is 
between ± 0.4, both high and low outliers are tested before any data are eliminated. The 
detection of high and low outliers is obtained with the following equations, respectively: 
 
 YNH SKYY +=              (4.43) 
and 
 YNL SKY = Y −              (4.44)  
where, 
 YH, YL = log of the high or low outlier limit, respectively 
 Ȳ = mean of the log of the sample flows 
 Sy = standard deviation of the sample 
 KN = critical deviate (from Table 4.21). 
 
 
If the sample is found to contain high outliers, the peak flows should be checked against other 
historical data sources and data from nearby stations. This check enables categorization of the 
flow observation as a potential anomaly or error in the sample. USGS Bulletin 17B (1982) 
recommends that high outliers be adjusted for historical information or retained in the sample as 
a systematic peak. The high outlier should not be discarded unless the peak flow is shown to be 
seriously in error. If a high outlier is adjusted based on historical data, the mean and standard 
deviation of the log distribution should be recomputed for the adjusted data before testing for 
low outliers. 
 
To test for low outliers, the low outlier threshold YL of Equation 4.44 is computed. The 
corresponding discharge XL = 10YL is then computed. If any discharges in the flood series are 
less than XL, then they are considered to be low outliers and should be deleted from the sample. 
The moments should be recomputed and the conditional probability adjustment from the arid 
lands hydrology section of Chapter 9 (Special Topics) applied. 
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 Table 4.21. Outlier Test Deviates (KN) at 10 Percent Significance Level  
(from USGS Bulletin 17B, 1982) 

Sample 
 Size 

KN 
Value 

Sample
 Size  

KN 
Value

Sample
 Size  

KN 
Value 

Sample 
 Size  

KN 
Value 

 10 2.036 45 2.727 80 2.940 115 3.064 
 11 2.088 46 2.736 81 2.945 116 3.067 
 12 2.134 47 2.744 82 2.949 117 3.070 
 13 2.165 48 2.753 83 2.953 118 3.073 
 14 2.213 49 2.760 84 2.957 119 3.075 
 15 2.247 50 2.768 85 2.961 120 3.078 
 16 2.279 51 2.775 86 2.966 121 3.081 
 17 2.309 52 2.783 87 2.970 122 3.083 
 18 2.335 53 2.790 88 2.973 123 3.086 
 19 2.361 54 2.798 89 2.977 124 3.089 
 20 2.385 55 2.804 90 2.989 125 3.092 
 21 2.408 56 2.811 91 2.984 126 3.095 
 22 2.429 57 2.818 92 2.889 127 3.097 
 23 2.448 58 2.824 93 2.993 128 3.100 
 24 2.467 59 2.831 94 2.996 129 3.102 
 25 2.487 60 2.837 95 3.000 130 3.104 
 26 2.502 61 2.842 96 3.003 131 3.107 
 27 2.510 62 2.849 97 3.006 132 3.109 
 28 2.534 63 2.854 98 3.011 133 3.112 
 29 2.549 64 2.860 99 3.014 134 3.114 
 30 2.563 65 2.866 100 3.017 135 3.116 
 31 2.577 66 2.871 101 3.021 136 3.119 
 32 2.591 67 2.877 102 3.024 137 3.122 
 33 2.604 68 2.883 103 3.027 138 3.124 
 34 2.616 69 2.888 104 3.030 139 3.126 
 35 2.628 70 2.893 105 3.033 140 3.129 
 36 2.639 71 2.897 106 3.037 141 3.131 
 37 2.650 72 2.903 107 3.040 142 3.133 
 38 2.661 73 2.908 108 3.043 143 3.135 
 39 2.671 74 2.912 109 3.046 144 3.138 
 40 2.682 75 2.917 110 3.049 145 3.140 
 41 2.692 76 2.922 111 3.052 146 3.142 
 42 2.700 77 2.927 112 3.055 147 3.144 
 43 2.710 78 2.931 113 3.058 148 3.146 
 44 2.720 79 2.935 114 3.061 149 3.148 
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Example 4.10. To illustrate these criteria for outlier detection, Equations 4.43 and 4.44 are 
applied to the 43-year record for the Medina River, which has a log mean of 2.091 (3.639 in CU 
units) and a log standard deviation of 0.394. From Table 4.21, KN = 2.710. 
 
Testing first for high outliers: 

 
Variable Value in SI Value in CU 

YH 
 

2.091 + 2.710 (0.394) = 3.159 
 

 3.639 + 2.710 (0.394) = 4.707 

XH 10 3.159 = 1,440 m3/s   10 4.707 = 50,900 ft3/s 

 
No flows in the sample exceed this amount, so there are no high outliers. Testing for low 
outliers, Equation 4.44 gives: 

 
Variable Value in SI Value in CU 

YL 
 

2.091 - 2.710 (0.394) = 1.023 
 

3.639 - 2.710 (0.394) = 2.571 

XL 
 

 10 1.023 = 11 m3/s 
 

 
10 2.571 = 372 ft3/s 

  
 
There are no flows in the Medina River sample that are less than this critical value. Therefore, 
the entire sample should be used in the log-Pearson Type III analysis.  

4.3.6.2 Historical Data 
When reliable information indicates that one or more large floods occurred outside the period of 
record, the frequency analysis should be adjusted to account for these events. Although 
estimates of unrecorded historical flood discharges may be inaccurate, they should be 
incorporated into the sample because the error in estimating the flow is small in relation to the 
random variability in the peak flows from year to year. If, however, there is evidence these 
floods resulted under different watershed conditions or from situations that differ from the 
sample, the large floods should be adjusted to reflect current watershed conditions. 
 
USGS Bulletin 17B (1982) provides methods to adjust for historical data based on the 
assumption that "the data from the systematic (station) record is representative of the 
intervening period between the systematic and historic record lengths."  Two sets of equations 
for this adjustment are given in Bulletin 17B. The first is applied directly to the log-transformed 
station data, including the historical events. The floods are reordered, assigning the largest 
historic flood a rank of one. The order number is then weighted giving a weight of 1.00 to the 
historic event, and weighting the order of the station data by a value determined from the 
equation: 
 

 
L + n
Z-H = W  (4.45) 

 
where, 
  W = the weighting factor 
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  H = the length of the historic period of years 
  Z = the number of historical events included in the analysis 
  L = the number of low outliers excluded from the analysis.  
 
The properties of the historically extended sample are then computed according to the 
equations  
 

 
WL - H

Q+QW
 =Q ZL,L

L

∑∑′  (4.46)  

 

 
1- WL - H

)Q - Q( + )Q - Q(W
 = )S(

2
LZL,

2
LL2

L

′∑′∑′  (4.47)  

and 
 

 ( )( ) 













′

′∑′∑′
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3
LZL,

3
LL

L
)S(

)Q -Q( + )Q -Q(W
 

2-WL-H1-LW-H
LW-H = G  (4.48)  

 
where, 
 Q̄L'   = historically adjusted mean log transform of the flows 
 QL  = log transform of the flows contained in the sample record 
 QL,Z  = log of the historic peak flow 
 SL'  = historically adjusted standard deviation 
 GL'  = historically adjusted skew coefficient. 
 
All other values are as previously defined. In the case where the sample properties were 
previously computed such as were done for the Medina River, USGS Bulletin 17B (1982) gives 
the following adjustments that can be applied directly 

 

 
LW - H
Q + QnW

 = Q ZL,L
L

∑′  (4.49)  
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 (4.51) 

 
Once the adjusted statistical parameters are determined, the log-Pearson Type III distribution is 
determined by Equation 4.27 using the Weibull plotting position formula: 
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1 + H

m = P
′

 (4.52)  

 
where m´ is the adjusted rank order number of the floods including historical events, where 
 

  m´ = m     for 1 ≤  m ≤ Z 
 

  m´ = Wm - (W - 1)(Z + 0.5) for (Z + 1) ≤ m ≤ (Z + nL) 
 
Detailed examples illustrating the computations for the historic adjustment are contained in 
USGS Bulletin 17B (1982) and the designer should consult this reference for further information. 

4.3.6.3 Incomplete Records and Zero Flows 
Stream flow records are often interrupted for a variety of reasons. Gages may be removed for 
some period of time, there may be periods of zero flow that are common in the arid regions of 
the United States, and there may be periods when a gage is inoperative either because the flow 
is too low to record or it is too large and causes a gage malfunction. 
 
If the break in the record is not flood related, such as the removal of a gage, no special 
adjustments are needed and the segments of the interrupted record can be combined together 
to produce a record equal to the sum of the length of the segments. When a gage malfunctions 
during a flood, it is usually possible to estimate the peak discharge from highwater marks or 
slope-area calculations. The estimate is made a part of the record, and a frequency analysis 
performed without further adjustment. 
 
Zero flows or flows that are too low to be recorded present more of a problem because, in the 
log transform, these flows produce undefined values. In this case, USGS Bulletin 17B (1982) 
presents an adjustment based on conditional probability that is applicable if not more than 25 
percent of the sample is eliminated.  
 
The adjustment for zero flows also is applied only after all other data adjustments have been 
made. The adjustment is made by first calculating the relative frequency, Pa, that the annual 
peak will exceed the level below where either flows are zero or not considered (the truncation 
level):  
 

 
n
M = P a  (4.53)  

 
where M is the number of flows above the truncated level and n is the total period of record. The 
exceedence probabilities, P, of selected points on the frequency curve are recomputed as a 
conditional probability as follows 
 
 da PPP =  (4.54)  
 
where Pd is the selected probability.  
 
Since the frequency curve adjusted by Equation 4.54 has unknown statistics, its properties, 
synthetic values, are computed by the equations: 
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 )S(K-)Qlog( = Q S50.050.0s  (4.55)  
 

 
K - K

)Q/Qlog(
 = S

50.001.0

50.001.0
S  (4.56) 

and 

 
( )
( )







Q/Qlog
Q/Qlog

 12.3 + 50.2 = -G
50.010.0

10.001.0
S  (4.57) 

 
where Q̄s, Ss, and Gs are the mean, standard deviation, and skew of the synthetic frequency 
curve, Q0.01, Q0.10, and Q0.50 are discharges with exceedence probabilities of 0.01, 0.10 and 
0.50, respectively, and K0.01 and K0.50 are the log-Pearson Type III deviates for exceedence 
probabilities of 0.01 and 0.50, respectively. The values of Q0.01, Q0.10 and Q0.50 must usually be 
interpolated since probabilities computed with Equation 4.53 are not normally those needed to 
compute the properties of the synthetic or truncated distribution. 
 
The log-Pearson Type III distribution can then be computed in the conventional manner using 
the synthetic statistical properties. USGS Bulletin 17B (1982) recommends the distribution be 
compared with the observed flows since data adjusted for conditional probability may not follow 
a log-Pearson Type III distribution. 

4.3.6.4 Mixed Populations 
In some areas of the United States, floods are caused by combinations of events (e.g., rainfall 
and snowmelt in mountainous areas or rainfall and hurricane events along the Gulf and Atlantic 
coasts). Records from such combined events are said to be mixed populations. These records 
are often characterized by very large skew coefficients and, when plotted, suggest that two 
different distributions might be applicable. 
 
Such records should be divided into two separate records according to their respective causes, 
with each record analyzed separately by an appropriate frequency distribution. The two 
separate frequency curves can then be combined through the concept of the addition of the 
probabilities of two events as follows: 
 
 ( ) ( ) ( ) ( ) ( )QPrQPr - QPr + QPr = Q or Q Pr mmm  (4.58) 
 

4.3.6.5 Two-Station Comparison  
The objective of this method is to improve the mean and standard deviation of the logarithms at 
a short-record station (Y) using the statistics from a nearby long-record station (X). The method 
is from Appendix 7 of USGS Bulletin 17B (1982). The steps of the procedure depend on the 
nature of the records. Specifically, there are two cases:  (1) the entire short record occurred 
during the duration of the long-record station, and (2) only part of the short record occurred 
during the duration of the long-record station. The following notation applies to the procedure: 
 

Nx = record length at long-record station 
 

N1 = number of years when flows were concurrently observed at X and Y 
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N2 = number of years when flows were observed at the long-record station, but not 

observed at the short-record station 
 
N3 = record length at short-record station 

 
Sy = Standard deviation of the logarithm of flows for the extended period at the short-

record station 
 

Sx1 = Standard deviation of logarithm of flows at the long-record station during the 
concurrent period 

 
Sx2 = Standard deviation of logarithm of flows at the long-record station for the period 

when flows were not observed at the short-record station 
 
Sy1 = Standard deviation of the logarithm of flows at the short-record station for the 

concurrent period 
 

Sy3 = Standard deviation of logarithm of flows for the entire period at the short-record 
station 

 
X1 = Logarithms of flows for the long-record station during the concurrent period 

 
X̄1 = Mean logarithm of flows at the long-record station for the concurrent period 

 
X̄2 = Mean logarithm of flows at the long-record station for the period when flow 

records are not available at the short-record station 
 

X̄3 = Mean logarithm of flows for the entire period at the long-record station 
 

Y1 = Logarithms of flows for the short-record station during the concurrent period 
 

Ȳ = Mean logarithm of flows for the extended period at the short-record station 
 

Ȳ1 = Mean logarithm of flows for the period of observed flow at the short-record station 
(concurrent period) 

 
Ȳ3 = Mean logarithm of flows for the entire period at the short-record station 

 
Case 1 is where N1 equals N3. Case 2 is where N3 is greater than N1. 
 

The following procedure is used: 
 

1a.  Compute the regression coefficient, b: 
 

 
( ) N/X - X

N/YX- YXb = 
1

2
1

2
1

11111

∑∑
∑∑∑  (4.59)  

 
 

1b. Compute the correlation coefficient, r: 
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S
Sb = r

y

x

1

1  (4.60)  

 
 

2. If Case 1 applies, go to Step 4; however, if case 2 applies, begin at Step 3. 
 

3a. Compute the variance of the adjusted mean (Ȳ): 
 

 ( ) 















)3 - N(
)r - 1( - r

N + N
N - 1

N
)S(

 = YVar
1

2
2

21

2

1

2
y 1   (4.61)  

 
3b. Compute Sy3

2: 

 2
3i

N

1i=3

2
3y )Y -Y(1 - N

1 = S
3

∑  (4.62)  

 
3c. Compute the variance of the mean Ȳ3 of the entire record at the short-record station: 
 

 ( ) ( )
N

S = Yvar
3

2
y

3
3  (4.63)  

 
3d. Compare Var(Ȳ) and Var(Ȳ3). If Var(Ȳ) < Var(Ȳ3), then go to Step 4; otherwise, go to 

Step 3e. 
 
 3e. Compute Ȳ3, which should be used as the best estimate of the mean: 
 

 Y
N
1 = Y i

N

1i=3
3

3

∑  (4.64)  

 
3f.  Go to Step 5. 

 
4a.  Compute the critical correlation coefficient rc: 
 

 
( ) 5.0

1
c 2N  

1 = r
−

 (4.65)  

4b. If r > rc, then adjust the mean: 
 

 ( )[ ]12
21

2
1 XXb

N + N
N + Y = Y −  (4.66a)  

 
or 
 

 ( )131 XXbY = Y −+   (4.66b)  
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and go to Step 5. 
 

4c. If r < rc, use Ȳ1 for Case 1 or Ȳ3 for Case 2 and go to Step 5. 
 

5.  If Case 1 applies, then go to Step 7; however, if Case 2 applies, begin at Step 6. 
 
6a.  Compute the variance of the adjusted variance Sy

2: 
 

 ] + CBr + Ar[ 
)1 - N + N(

)S(N
 + 

1 - N

)S(2
 = )S(Var 24

2
21

4
y2

1

4
y2

y
11  (4.67)  

where: 
 

 

( ) ( )
( )( )

( )( )

( )
( )

( )( )
( )

( )
( ) ( )2-N3-N

4-NNN + 
3-N

1+N4-N2 + 
3-N

4-NN2+ 

1-N
2-N+N21+N - 

5-N3-N
2+N3 + 

3-N
1+N2C = 

)2-(N)3-N(
)4-N(NN2 - 

)3-N(
)3+N)(4-N(2- 

)3-N(
)5-N)(4-N(N2 + 

)3-N(
)14-N-N(2 + 

)5-N()3-N(
)6-N()2+N(6B = 

)3 - N(
)4 - N(4 + 

)2 - N()3 - N(
)4 - N(NN+ 

)3 - N(
)4 - N(N2 - 

)3 - N(
)4 - N(8 - 

)5 - N()3 - N(
)8 - N()6 - N()2 + N(A = 

1
2

1

2
121

1

11
2

1

12

1

211

11

2

1

1

1
2

1

2
121

1

11

2
1

112

1

1
2

1

11

12

1

1

1
2

1

2
121

2
1

2
12

1

1

11

112

 (4.68)  

 
6b. Compute the variance of the variance (Sy3

2) of the entire record at the short-record 
station: 

 

 ( ) ( )
1 - N

S2 = SVar
3

2
3Y2

3Y  (4.69)  

 
6c.  If Var(Sy3

2) > Var(Sy
2), go to Step 7; otherwise, go to Step 6d. 

 
6d.  Use Sy3 as the best estimate of the standard deviation. 

 
6e.  Go to Step 8. 

 
7a.  Compute the critical correlation coefficient ra: 
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 ±
A2

CA4-B -B 
 = r

2
5.0

a  (4.70) 

 
where A, B, and C are defined in Step 6a. 

 
7b.  If |r| > ra, then adjust the variance: 
 

 

( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) 








−

+

×

2
12

2

21

212
1Y

2

11

1122
2X

2
2

2
1Y1

21

2
y

XXbNN
NN+Sr-1

2-N3-N
1-N4-NN+Sb1-N+S1-N

1- + NN
1 = S

 (4.71)  

 
and go to Step 8. 

 
7c.  If |r| < ra, use Sy1

2 for Case 1 or Sy3
2 for Case 2 and go to Step 8. 

 
 8. The adjusted skew coefficient should be computed by weighting the generalized skew 

with the skew computed from the short-record station as described in USGS Bulletin 17B 
(1982). 

 
Example 4.11. Table 4.22 contains flood series for two stations in SI and CU units, respectively. 
Forty-seven years of record are available at the long-record station (1912-1958). Thirty years of 
record are available at the short-record station (1929-1958). The logarithms of the data along 
with computed means and standard deviations are also provided in the table. The two-station 
comparison approach will be applied to improve the estimates of mean and standard deviation 
for the short-record station. Since the short-record station is a subset, in time, of the long-record 
station, the analysis is conducted using case 1. 
 
Step 1 is to compute the correlation coefficient. The regression coefficient is calculated using 
Equation 4.59, as follows: 
 

Variable Value in SI Value in CU 

( ) N/X - X
N/YX - YXb = 

1
2

1
2
1

11111

∑∑
∑∑∑

 631.0
30/)23.82(99.229

30
)53.63)(23.82(04.177

2

=
−

−
=

 
631.0

30/)67.128(46.556
30

)97.109)(67.128(55.474
2

=
−

−
=

 

 
 
Then, the correlation coefficient, r, is calculated using Equation 4.60. SX1 and SY1 can be 
calculated from the data in Table 4.22 as 0.398 and 0.303, respectively.  
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Variable Value in SI Value in CU 

S
Sb = r

y

x

1

1  83.0
303.0
398.0)631.0( ==  83.0

303.0
398.0)631.0( ==  

 
 
For case 1, the next step (step 4) is to compute the critical correlation coefficient, rC, according 
to Equation 4.65 and compare it to the correlation coefficient, r. 
 
 

Variable Value in SI Value in CU 

5.0
1

c )2 - N(
1 = r  19.0

)230(
1

5.0 =
−

=  19.0
)230(

1
5.0 =

−
=  

 
 
Since r > rC , the mean value of logarithms for the short-record station is adjusted using 
Equation 4.66a: 
 

105.2)]741.2685.2(631.0[
1730

17118.2)]XX(b[
N + N

N +  = YY 12
21

2
1 =−

+
+=−  (SI) 

 
653.3)]289.4233.4(631.0[

1730
17666.3)]XX(b[

N + N
N +  = YY 12

21

2
1 =−

+
+=−  (CU)  

 
 
For case 1, the next step (step 7) is to compute the critical correlation coefficient, ra, according 
to Equation 4.70 and compare it to the correlation coefficient, r. A, B, and C are –3.628, 0.4406, 
and 0.01472, respectively.  
 

39.0
)628.3(2

)01472.0)(628.3(4)4406.0(4406.0
2A

4AC-B  B- = r

5.0
22

5.0

a =














−
−−±−

=










 ±  

Since r  > ra, the variance of logarithms for the short-record station is adjusted using Equation 
4.71, which gives an adjusted variance of 0.07957 and yields Sy= 0.282. 
 
Improved estimates of the mean and standard deviation have been developed using the long-
record data. A mean of 2.105 log (m3/s) (3.653 log (ft3/s)) supersedes a mean of 2.118 log 
(m3/s) (3.666 log (ft3/s)) while a standard deviation of 0.282 supersedes a standard deviation of 
0.303. Step 8 is used to compute an adjusted skew. The revised mean and standard deviation 
along with the adjusted skew may now be applied to estimate design discharges.  

4.3.7 Sequence of Flood Frequency Calculations 
The above sections have discussed several standard frequency distributions and a variety of 
adjustments to test or improve on the predictions and/or to account for unusual variations in the 
data. In most cases, not all the adjustments are necessary, and generally only one or two may 
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be indicated. Whether the adjustments are even made may depend on the size of the project 
and the purpose for which the data may be used. For some of the adjustments, there is a 
preferred sequence of calculation. Some adjustments must be made before others can be 
made.  
 
Unless there are compelling reasons not to use the log-Pearson Type III distribution, it should 
be used when making a flood frequency analysis. USGS Bulletin 17B (1982) presents a flow 
chart outlining a path through the frequency calculations and adjustments. This outline forms the 
basis for many of the available log-Pearson Type III computer programs. 

Table 4.22(SI). Data for Two-Station Adjustment 

 Long-record Station Short-record Station  
Year Flow (m3/s) Log Flow Flow (m3/s) Log Flow X1Y1 X1

2 
1912 129  2.111          
1913 220  2.342          
1914 918  2.963          
1915 779  2.892          
1916 538  2.731          
1917 680  2.833          
1918 374  2.573          
1919 439  2.642          
1920 289  2.461          
1921 399  2.601          
1922 419  2.622          
1923 297  2.473          
1924 326  2.513          
1925 779  2.892          
1926 504  2.702          
1927 1,028  3.012          
1928 1,914  3.282          
1929 156  2.193  43  1.633 3.582  4.810  
1930 722  2.859  170  2.230 6.376  8.171  
1931 158  2.199  42  1.623 3.569  4.834  
1932 283  2.452  154  2.188 5.363  6.011  
1933 144  2.158  31  1.491 3.219  4.659  
1934 314  2.497  74  1.869 4.667  6.235  
1935 722  2.859  114  2.057 5.880  8.171  
1936 1,082  3.034  124  2.093 6.352  9.207  
1937 224  2.350  94  1.973 4.637  5.524  
1938 2,633  3.420  651  2.814 9.624  11.699  
1939 91  1.959  36  1.556 3.049  3.838  
1940 1,705  3.232  323  2.509 8.109  10.444  
1941 858  2.933  346  2.539 7.448  8.605  
1942 994  2.997  312  2.494 7.476  8.984  
1943 1,537  3.187  197  2.294 7.312  10.155  
1944 240  2.380  91  1.959 4.663  5.665  
1945 810  2.908  91  1.959 5.698  8.459  
1946 623  2.794  175  2.243 6.268  7.809  
1947 504  2.702  115  2.061 5.569  7.303  
1948 470  2.672  207  2.316 6.188  7.140  
1949 174  2.241 110 2.041 4.574  5.020
1950 507  2.705 125 2.097 5.672  7.317
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Table 4.22(SI). Data for Two-Station Adjustment 

 Long-record Station Short-record Station  
1951 1,421  3.153 110 2.041 6.436  9.939
1952 595  2.775 150 2.176 6.038  7.698
1953 1,133  3.054  218 2.338 7.142  9.328
1954 649  2.812 139 2.143 6.027  7.909
1955 167  2.223 70 1.845 4.101  4.940
1956 2,945  3.469 260 2.415 8.378  12.035
1957 926  2.967 174 2.241 6.647  8.801
1958 1,113  3.046 195 2.290 6.977  9.281
Total Record            

Sum  127.87    63.53  177.04  229.99  
Mean  2.721    2.118      
Standard Deviation  0.357    0.303      

Concurrent Record           
Sum 82.23    63.53  177.04  229.99  
Mean 2.741    2.118     
Standard Deviation 0.398    0.303     

Long Record Only          
Mean 2.685         

 
 

Table 4.22(CU). Data for Two-Station Adjustment 
  

 
 

Long-record Station 
 
Short-record Station   

Year 
 
Flow (ft3/s) 

 
Log Flow 

 
Flow (ft3/s)

 
Log Flow X1Y1 X1

2  
1912 4,570 3.660 

 
 

 
    

1913 7,760 3.890 
 
 

 
    

1914 32,400 4.511 
 
 

 
    

1915 27,500 4.439 
 
 

 
    

1916 19,000 4.279 
 
 

 
    

1917 24,000 4.380 
 
 

 
    

1918 13,200 4.121 
 
 

 
    

1919 15,500 4.190 
 
 

 
    

1920 10,200 4.009 
 
 

 
    

1921 14,100 4.149 
 
 

 
    

1922 14,800 4.170 
 
 

 
    

1923 10,500 4.021 
 
 

 
    

1924 11,500 4.061 
 
 

 
    

1925 27,500 4.439 
 
 

 
    

1926 17,800 4.250 
 
 

 
    

1927 36,300 4.560 
 
 

 
    

1928 67,600 4.830 
 
 

 
    

1929   5,500 3.740 1,520 3.182 11.901 13.990  
1930 25,500 4.407 6,000 3.778 16.649 19.418  
1931   5,570 3.746 1,500 3.176 11.897 14.031 
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Table 4.22(CU). Data for Two-Station Adjustment 
  

 
 

Long-record Station 
 
Short-record Station   

Year 
 
Flow (ft3/s) 

 
Log Flow 

 
Flow (ft3/s)

 
Log Flow X1Y1 X1

2  
1932  9,980 3.999 5,440 3.736 14.939 15.993  
1933  5,100 3.708 1,080 3.033 11.247 13.746  
1934 11,100 4.045 2,630 3.420 13.835 16.365  
1935 25,500 4.407 4,010 3.603 15.877 19.418  
1936 38,200 4.582 4,380 3.641 16.685 20.995  
1937   7,920 3.899 3,310 3.520 13.723 15.200  
1938 93,000 4.968 23,000 4.362 21.671 24.686  
1939   3,230 3.509 1,260 3.100 10.880 12.315  
1940 60,200 4.780 11,400 4.057 19.390 22.845  
1941 30,300 4.481 12,200 4.086 18.313 20.083  
1942 35,100 4.545 11,000 4.041 18.369 20.660 
1943 54,300 4.735 6,970 3.843 18.197 22.418  
1944   8,460 3.927 3,220 3.508 13.777 15.424  
1945 28,600 4.456 3,230 3.509 15.638 19.859  
1946 22,000 4.342 6,180 3.791 16.462 18.857  
1947 17,800 4.250 4,070 3.610 15.342 18.066  
1948 16,600 4.220 7,320 3.865 16.309 17.809  
1949   6,140 3.788 3,870 3.588 13.591 14.350  
1950 17,900 4.253 4,430 3.646 15.508 18.087  
1951 50,200 4.701 3,870 3.588 16.865 22.097  
1952 21,000 4.322 5,280 3.723 16.090 18.682  
1953 40,000 4.602 7,710 3.887 17.888 21.179  
1954 22,900 4.360 4,910 3.691 16.093 19.008  
1955   5,900 3.771 2,480 3.394 12.800 14.219  
1956     104,000 5.017 9,180 3.963 19.882 25.171  
1957  32,700 4.515 6,140 3.788 17.102 20.381  
1958  39,300 4.594 6,880 3.838 17.631 21.108 

Total Record      
Sum 200.63  109.97 474.55 556.46 
Mean 4.269  3.666   
Standard Deviation 0.357  0.303   

Concurrent Record      
Sum 128.67  109.97 474.55 556.46 
Mean 4.289  3.666   
Standard Deviation 0.398  0.303   

Long Record Only      
Mean 4.233     

 
 
The SCS Handbook (1972) also outlines a sequence for flood frequency analysis that is 
summarized as follows: 
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1. Obtain site information, the systematic station data, and historic information. These data 
should be examined for changes in watershed conditions, gage datum, flow regulation, etc. 
It is in this initial step that missing data should be estimated if indicated by the project.  

 
2. Order the flood data, determine the plotting position, and plot the data on selected 

probability graph paper (usually log-probability). Examine the data trend to select the 
standard distribution that best describes the population from which the sample is taken. Use 
a mixed-population analysis if indicated by the data trend and the watershed information. 

 
3. Compute the sample statistics and the frequency curve for the selected distribution. Plot the 

frequency curve with the station data to determine how well the flood data are distributed 
according to the selected distribution. 

 
4. Check for high and low outliers. Adjust for historic data, retain or eliminate outliers, and 

recompute the frequency curve. 
 
5. Adjust data for missing low flows and zero flows and recompute the frequency curve. 
 
6. Check the resulting frequency curve for reliability. 

4.3.8 Other Methods for Estimating Flood Frequency Curves 
The techniques of fitting an annual series of flood data by the standard frequency distributions 
described above are all samples of the application of the method of moments. Population 
moments are estimated from the sample moments with the mean taken as the first moment 
about the origin, the variance as the second moment about the mean, and the skew as the third 
moment about the mean. 
 
Three other recognized methods are used to determine frequency curves. They include the 
method of maximum likelihood, the L-moments or probability weighted moments, and a 
graphical method. The method of maximum likelihood is a statistical technique based on the 
principle that the values of the statistical parameters of the sample are maximized so that the 
probability of obtaining an observed event is as high as possible. The method is somewhat 
more efficient for highly skewed distributions, if in fact efficient estimates of the statistical 
parameters exist. On the other hand, the method is very complicated to use and its practical use 
in highway design is not justified in view of the wide acceptance and use of the method of 
moments for fitting data with standard distributions. The method of maximum likelihood is 
described in detail by Kite (1988) and appropriate tables are presented from which the standard 
distributions can be determined. 

 
Graphical methods involve simply fitting a curve to the sample data by eye. Typically the data 
are transformed by plotting on probability or log-probability graph paper so that a straight line 
can be obtained. This procedure is the least efficient, but, as noted in Sanders (1980), some 
improvement is obtained by ensuring that the maximum positive and negative deviations from 
the selected line are equal and that the maximum deviations are made as small as possible. 
This is, however, an expedient method by which highway designers can obtain a frequency 
distribution estimate. 

4.3.9 Low-flow Frequency Analysis 
While instantaneous maximum discharges are used for flood frequency analyses, hydrologists 
are frequently interested in low flows. Low-flow frequency analyses are needed as part of water-
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quality studies and the design of culverts where fish passage is a design criterion. For low-flow 
frequency analyses, it is common to specify both a return period and a flow duration. For 
example, a low-flow frequency curve may be computed for a 7-day duration. In this case, the 
10-year event would be referred to as the 7-day, 10-year low flow. 
 
A data record to make a low-flow frequency analysis is compiled by identifying the lowest mean 
flow rate in each year of record for the given duration. For example, if the 21-day low-flow 
frequency curve is needed, the record for each year is analyzed to find the 21-day period in 
which the mean flow is the lowest. A moving-average smoothing analysis with a 21-day 
smoothing interval could be used to identify this flow. For a record of N years, such an analysis 
will yield N low flows for the needed duration. 
 
The computational procedure for making a low-flow frequency analysis is very similar to that for 
a flood frequency analysis. It is first necessary to specify the probability distribution. The log-
normal distribution is most commonly used, although another distribution could be used.  
 
To make a log-normal analysis, a logarithmic transform of each of the N low flows is made. The 
mean and standard deviation of the logarithms are computed. Up to this point, the analysis is 
the same as for an analysis of peak flood flows. However, for a low-flow analysis, the governing 
equation is as follows:  

 LL Sz Y = Y log −   (4.72) 
 
where, 
 ȲL, SL = logarithmic mean and standard deviation, respectively 
 z = standard normal deviate. 
 
Note that Equation 4.73 includes a minus sign rather than the plus sign of Equation 4.27. Thus, 
the low-flow frequency curve will have a negative slope rather than the positive slope that is 
typical of peak-flow frequency curves. Also, computed low flows for the less frequent events 
(e.g., the 100-year low flow) will be less than the mean. For example, if the logarithmic statistics 
for a 7-day low-flow record are Q̄L = 1.1 and SL = 0.2, the 7-day, 50-year low flow is: 
 

)sft170(sm4.9 = Q     
0.6892=(0.2)2.054-1.1= Y log
33

 

 
To plot the data points so they can be compared with the computed population curve, the low 
flows are ranked from smallest to largest (not largest to smallest as with a peak-flow analysis). 
The smallest flow is given a rank of 1 and the largest flow is given a rank of N. A plotting 
position formula (Equation 4.21) can then be selected to compute the probabilities. Each 
magnitude is plotted against the corresponding probability. The probability is plotted on the 
upper horizontal axis and is interpreted as the probability that the flow in any one time period will 
be less than the value on the frequency curve. For the calculation provided above, there is a 2 
percent chance that the 7-day mean flow will be less than 4.9 m3/s (170 ft3/s) in any one year.  



4-75 

4.4 INDEX ADJUSTMENT OF FLOOD RECORDS 
The flood frequency methods of this chapter assume that the flood record is a series of events 
from the same population. In statistical terms, the events should be independent and identically 
distributed. In hydrologic terms, the events should be the result of the same meteorological and 
runoff processes. The year-to-year variation should only be due to the natural variation such as 
that of the volumes and durations of rainfall events. 
 
Watershed changes, such as deforestation and urbanization, change the runoff processes that 
control the watershed response to rainfall. In statistical terms, the events are no longer 
identically distributed because the population changes with changes in land use. Afforestation 
might decrease the mean flow. Urbanization would probably increase the mean flow but 
decrease the variation of the peak discharges. If the watershed change takes place over an 
extended period, each event during the period of change is from a different population. Thus, 
magnitudes and exceedence probabilities obtained from the flood record could not represent 
future events. Before such a record is used for a frequency analysis, the measured events 
should be adjusted to reflect homogeneous watershed conditions. One method of adjusting a 
flood record is referred to as the index-adjustment method (which should not be confused with 
the index-flood method of Chapter 5). 
 
Flood records can be adjusted using an index method, which is a class of methods that uses an 
index variable, such as the percentage of imperviousness or the fraction of a channel reach that 
has undergone channelization, to adjust the flood peaks. Index methods require values of the 
index variable for each year of the record and a model that relates the change in peak 
discharge, the index variable, and the exceedence probability. In addition to urbanization, index 
methods could be calibrated to adjust for the effects of deforestation, surface mining activity, 
agricultural management practices, or climate change. 

4.4.1 Index Adjustment Method for Urbanization 
Since urbanization is a common cause of nonhomogeneity in flood records, it will be used to 
illustrate index adjustment of floods. The literature does not identify a single method that is 
considered to be the best method for adjusting an annual flood series when only the time record 
of urbanization is available. Furthermore, urbanization may be defined by a number of 
parameters, which include, but are not limited to: percent imperviousness, percent urbanized 
land cover (residential, commercial, and industrial), and population density. Each method 
depends on the data used to calibrate the prediction process, and the data used to calibrate the 
methods are usually very sparse. However, the sensitivities of measured peak discharges 
suggest that a 1 percent increase in percent imperviousness causes an increase in peak 
discharge of about 1 to 2.5 percent for the 100-year and the 2-year events, respectively 
(McCuen, 1989).  
 
Based on the general trends of results published in available urban flood-frequency studies, 
McCuen (1989) developed a method of adjusting a flood record for the effects of urbanization. 
Urbanization refers to the introduction of impervious surfaces or improvements of the hydraulic 
characteristics of the channels or principal flow paths. Figure 4.16 shows the peak adjustment 
factor as a function of the exceedence probability for percentages of imperviousness up to 60 
percent. The greatest effect is for the more frequent events and the highest percentage of 
imperviousness. For this discussion, percent imperviousness is used as the measure of 
urbanization.  
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Given the return period of a flood peak for a nonurbanized watershed, the effect of an increase 
in urbanization can be assessed by multiplying the discharge by the peak adjustment factor, 
which is a function of the return period and the percentage of urbanization. Where it is 
necessary to adjust a discharge to another watershed condition, the measured discharge can 
be divided by the peak adjustment factor for the existing condition to produce a "rural" 
discharge. This computed discharge is then multiplied by the peak adjustment factor for the 
second watershed condition. The first operation (i.e., division) adjusts the discharge to a 
magnitude representative of a nonurbanized condition while the second operation (i.e., 
multiplication) adjusts the new discharge to a computed discharge for the second watershed 
condition.  

4.4.2 Adjustment Procedure 
The adjustment method of Figure 4.16 requires an exceedence probability. For a flood record, 
the best estimate of the probability is obtained from a plotting position formula.  
 
The following procedures can be used to adjust a flood record for which the individual flood 
events have occurred on a watershed that is undergoing a continuous change in the level of 
urbanization: 
 
1. Identify the percentage of urbanization for each event in the flood record. While 

percentages may not be available for every year of record, they will have to be 
interpolated or extrapolated from existing estimates so a percentage is assigned to each 
flood event of record. 

 
2. Identify the percentage of urbanization for which an adjusted flood record is needed. 

This is the percentage to which all flood events in the record will be adjusted, thus 
producing a record that is assumed to include events that are independent and 
identically distributed. 

 
3. Compute the rank (i) and exceedence probability (p) for each event in the flood record; a 

plotting position formula can be used to compute the probability. 
 
4. Using the exceedence probability and the percentage of urbanization from Step 1, find 

the peak adjustment factor (f1) from Figure 4.16 to transform the measured peak from 
the actual level of urbanization to a nonurbanized condition. 

 
5. Using the exceedence probability and the percentage of urbanization from Step 2 for 

which a flood series is needed from Figure 4.16, find the peak adjustment factor (f2) that 
is necessary to transform the computed nonurbanized peak of Step 4 to a discharge for 
the desired level of urbanization. 
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6. Compute the adjusted discharge (Qa) by: 
 

  Q
f
f = Q

1

2
a  (4.73)  

 
in which Q is the measured discharge. 

 
7. Repeat Steps 4, 5, and 6 for each event in the flood record and rank the adjusted series. 
 
8. If the ranks of the events in the adjusted series differ from the ranks of the previous 

series, which would be the measured events after one iteration of Steps 3 to 7, then the 
iteration process should be repeated until the ranks do not change. 
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Figure 4.16. Peak adjustment factors for correcting a flood discharge magnitude for the 
change in imperviousness (from McCuen, 1989) 
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Example 4.12. Table 4.23 (SI) and Table 4.23 (CU) contain the 48-year record of annual 
maximum peak discharges for the Rubio Wash watershed in Los Angeles in SI and CU units, 
respectively. Between 1929 and 1964, the percent of impervious cover, which is also given in 
Table 4.23, increased from 18 to 40 percent. The log moments are summarized below. 
 
  

Variable Value in SI Value in CU 
Log mean 1.704 3.252 
Log standard deviation 0.191 0.191 
Station skew -0.7      -0.7      
Generalized skew -0.45    -0.45    

 
The procedure given above was used to adjust the flood record for the period from 1929 to 1963 
to current impervious cover conditions. For example, while the peak discharges for 1931 and 
1945 occurred when the percent impervious cover was 19 and 34 percent, respectively, the 
values were adjusted to a common percentage of 40 percent, which is the watershed state after 
1964. For this example, imperviousness was used as the index variable as a measure of 
urbanization.  
 
The adjusted rank after each iteration is compared with the rank prior to the iteration to 
determine if the computations are complete. If changes occur, a subsequent iteration may be 
required. Three iterations of adjustments were required for this example. The iterative process is 
required because the ranks for some of the earlier events changed considerably from the ranks 
of the measured record; for example, the rank of the 1930 peak changed from 30 to 22 on the 
first trial, and the rank of the 1933 event went from 20 to 14. Because of such changes in the 
rank, the exceedence probabilities change and thus the adjustment factors, which depend on 
the exceedence probabilities, change. After the third adjustment is made, the rank of the events 
did not change, so the process is complete. The adjusted series is given in Table 4.23.  
The adjusted series has a mean and standard deviation of 1.732 and 0.179, respectively, in SI 
units (3.280 and 0.178 in CU units). The mean increased, but the standard deviation decreased. 
Thus the adjusted flood frequency curve will, in general, be higher than the curve for the 
measured series, but will have a small slope. The computations for the adjusted and unadjusted 
flood frequency curves are given in Table 4.24 (SI) and Table 4.24 (CU). Since the measured 
series was not homogeneous, the generalized skew of -0.45 was used to compute the values 
for the flood frequency curve. The percent increase in the 2-, 5-, 10-, 25-, 50- and 100-year 
flood magnitudes are also given in Table 4.24. The change is relatively minor because the 
imperviousness did not change after 1964 and the change was small (i.e., 10 percent) from 
1942 to 1964; also most of the larger storm events occurred after the watershed had reached 
the developed condition. The adjusted series would represent the annual flood series for a 
constant urbanization condition (i.e., 40 percent imperviousness). Of course, the adjusted series 
is not a measured series.  
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Table 4.23(SI). Adjustment of the Rubio Wash Annual Maximum Flood Record for 
Urbanization 

 
    Iteration 1  

Year Impervious-
ness (%) 

Measured 
Discharge 

(m3/s) 
Rank Exceedence 

Probability f1 f2 

Adjusted 
Discharge 

(m3/s) 
Adjuste
d Rank 

1929 18 18.7 47 0.959 1.560 2.075 24.9 47 
1930 18 47.8 30 0.612 1.434 1.846 61.5 22 
1931 19 22.6 46 0.939 1.573 2.044 29.4 44 
1932 20 42.8 34 0.694 1.503 1.881 53.6 32 
1933 20 58.6 20 0.408 1.433 1.765 72.2 13 
1934 21 47.6 31 0.633 1.506 1.855 58.6 24 
1935 21 38.8 35 0.714 1.528 1.890 48.0 34 
1936 22 33.4 40 0.816 1.589 1.956 41.1 36 
1937 23 68.0 14 0.286 1.448 1.713 80.4 8 
1938 25 48.7 29 0.592 1.568 1.838 57.1 28 
1939 26 28.3 43 0.878 1.690 1.984 33.2 42 
1940 28 54.9 26 0.531 1.603 1.814 62.1 20 
1941 29 34.0 38 0.776 1.712 1.931 38.3 37 
1942 30 78.7 7 0.143 1.508 1.648 86.0 5 
1943 31 54.6 27 0.551 1.663 1.822 59.8 23 
1944 33 50.4 28 0.571 1.705 1.830 54.1 31 
1945 34 46.1 32 0.653 1.752 1.863 49.0 33 
1946 34 75.0 10 0.204 1.585 1.672 79.1 10 
1947 35 59.2 19 0.388 1.675 1.757 62.1 21 
1948 36 15.0 48 0.980 2.027 2.123 15.7 48 
1949 37 30.0 42 0.857 1.907 1.969 31.0 43 
1950 38 64.8 17 0.347 1.708 1.740 66.0 16 
1951 38 85.5 4 0.082 1.557 1.583 86.9 4 
1952 39 62.3 18 0.367 1.732 1.748 62.9 19 
1953 39 65.4 15 0.306 1.706 1.722 66.0 17 
1954 39 36.5 36 0.735 1.881 1.900 36.9 38 
1955 39 55.8 25 0.510 1.788 1.806 56.4 29 
1956 39 84.4 5 0.102 1.589 1.602 85.1 6 
1957 39 77.6 9 0.184 1.646 1.660 78.3 11 
1958 39 78.7 8 0.163 1.620 1.634 79.4 9 
1959 39 27.9 44 0.898 1.979 2.001 28.2 45 
1960 39 25.5 45 0.918 1.999 2.020 25.8 46 
1961 39 34.0 39 0.796 1.911 1.931 34.4 40 
1962 39 33.4 41 0.837 1.935 1.956 33.8 41 
1963 39 44.5 33 0.673 1.853 1.872 45.0 35 
1964 40 57.8 22 0.449 1.781 1.781 57.8 27 
1965 40 65.1 16 0.327 1.731 1.731 65.1 18 
1966 40 57.8 23 0.469 1.790 1.790 57.8 26 
1967 40 69.6 13 0.265 1.703 1.703 69.6 15 
1968 40 81.8 6 0.122 1.619 1.619 81.8 7 
1969 40 71.9 12 0.245 1.693 1.693 71.9 14 
1970 40 104.8 1 0.020 1.480 1.480 104.8 1 
1971 40 35.1 37 0.755 1.910 1.910 35.1 39 
1972 40 89.6 3 0.061 1.559 1.559 89.6 3 
1973 40 56.2 24 0.490 1.798 1.798 56.2 30 
1974 40 90.0 2 0.041 1.528 1.528 90.0 2 
1975 40 58.6 21 0.429 1.773 1.773 58.6 25 
1976 40 73.9 11 0.224 1.683 1.683 73.9 12 
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Table 4.23(SI). Adjustment of the Rubio Wash Annual Maximum Flood Record for 
Urbanization  (cont'd) 

 
    Iteration 2  

Year Impervious-
ness (%) 

Measured 
Discharge 

(m3/s) 

Adjusted 
Rank-

Iteration 
1 

Adjusted 
Exceedence 
Probability 

f1 f2 

Adjusted 
Discharge 

(m3/s) 

Adjusted 
Rank-

Iteration 
2 

1929 18 18.7 47 0.959 1.560 2.075 24.9 47 
1930 18 47.8 22 0.449 1.399 1.781 60.9 22 
1931 19 22.6 44 0.898 1.548 2.001 29.2 44 
1932 20 42.8 32 0.653 1.493 1.863 53.4 32 
1933 20 58.6 13 0.265 1.395 1.703 71.5 14 
1934 21 47.6 24 0.490 1.475 1.806 58.3 25 
1935 21 38.8 34 0.694 1.522 1.881 48.0 34 
1936 22 33.4 36 0.735 1.553 1.900 40.9 36 
1937 23 68.0 8 0.163 1.405 1.648 79.8 8 
1938 25 48.7 28 0.571 1.562 1.830 57.1 28 
1939 26 28.3 42 0.857 1.680 1.969 33.2 42 
1940 28 54.9 20 0.408 1.573 1.773 61.9 21 
1941 29 34.0 37 0.755 1.695 1.910 38.3 37 
1942 30 78.7 5 0.102 1.472 1.602 85.7 5 
1943 31 54.6 23 0.469 1.637 1.790 59.7 23 
1944 33 50.4 31 0.633 1.726 1.855 54.2 31 
1945 34 46.1 33 0.673 1.760 1.872 49.0 33 
1946 34 75.0 10 0.204 1.585 1.672 79.1 10 
1947 35 59.2 21 0.429 1.690 1.773 62.1 20 
1948 36 15.0 48 0.980 2.027 2.123 15.7 48 
1949 37 30.0 43 0.878 1.921 1.984 31.0 43 
1950 38 64.8 16 0.327 1.708 1.740 66.0 16 
1951 38 85.5 4 0.082 1.557 1.583 86.9 4 
1952 39 62.3 19 0.388 1.741 1.757 62.9 19 
1953 39 65.4 17 0.347 1.724 1.740 66.0 17 
1954 39 36.5 38 0.776 1.901 1.920 36.9 38 
1955 39 55.8 29 0.592 1.820 1.838 56.4 29 
1956 39 84.4 6 0.122 1.606 1.619 85.1 6 
1957 39 77.6 11 0.224 1.668 1.683 78.3 11 
1958 39 78.7 9 0.184 1.646 1.660 79.4 9 
1959 39 27.9 45 0.918 1.999 2.020 28.2 45 
1960 39 25.5 46 0.939 2.022 2.044 25.8 46 
1961 39 34.0 40 0.816 1.923 1.943 34.4 40 
1962 39 33.4 41 0.837 1.935 1.956 33.8 41 
1963 39 44.5 35 0.714 1.871 1.890 45.0 35 
1964 40 57.8 27 0.551 1.822 1.822 57.8 26 
1965 40 65.1 18 0.367 1.748 1.748 65.1 18 
1966 40 57.8 26 0.531 1.822 1.822 57.8 27 
1967 40 69.6 15 0.306 1.722 1.722 69.6 15 
1968 40 81.8 7 0.143 1.634 1.634 81.8 7 
1969 40 71.9 14 0.286 1.713 1.713 71.9 13 
1970 40 104.8 1 0.020 1.480 1.480 104.8 1 
1971 40 35.1 39 0.796 1.931 1.931 35.1 39 
1972 40 89.6 3 0.061 1.559 1.559 89.6 3 
1973 40 56.2 30 0.612 1.846 1.846 56.2 30 
1974 40 90.0 2 0.041 1.528 1.528 90.0 2 
1975 40 58.6 25 0.510 1.806 1.806 58.6 24 
1976 40 73.9 12 0.245 1.693 1.693 73.9 12 
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Table 4.23(SI). Adjustment of the Rubio Wash Annual Maximum Flood Record for 
Urbanization  (cont'd) 

 Iteration 3          

Year Impervious-
ness (%) 

Measured 
Discharge 

(m3/s) 

Adjusted 
Rank-

Iteration 2 

Adjusted 
Exceedence 
Probability 

f1 f2 

Adjusted 
Discharge 

(m3/s) 

Adjusted 
Rank-

Iteration 3
1929 18 18.7 47 0.959 1.560 2.075 24.9 47 
1930 18 47.8 22 0.449 1.399 1.781 60.9 22 
1931 19 22.6 44 0.898 1.548 2.001 29.2 44 
1932 20 42.8 32 0.653 1.493 1.863 53.4 32 
1933 20 58.6 14 0.286 1.401 1.713 71.7 14 
1934 21 47.6 25 0.510 1.475 1.806 58.3 25 
1935 21 38.8 34 0.694 1.522 1.881 48.0 34 
1936 22 33.4 36 0.735 1.553 1.900 40.9 36 
1937 23 68.0 8 0.163 1.405 1.648 79.8 8 
1938 25 48.7 28 0.571 1.562 1.830 57.1 28 
1939 26 28.3 42 0.857 1.680 1.969 33.2 42 
1940 28 54.9 21 0.429 1.573 1.773 61.9 21 
1941 29 34.0 37 0.755 1.695 1.910 38.3 37 
1942 30 78.7 5 0.102 1.472 1.602 85.7 5 
1943 31 54.6 23 0.469 1.637 1.790 59.7 23 
1944 33 50.4 31 0.633 1.726 1.855 54.2 31 
1945 34 46.1 33 0.673 1.760 1.872 49.0 33 
1946 34 75.0 10 0.204 1.585 1.672 79.1 10 
1947 35 59.2 20 0.408 1.683 1.765 62.1 20 
1948 36 15.0 48 0.980 2.027 2.123 15.7 48 
1949 37 30.0 43 0.878 1.921 1.984 31.0 43 
1950 38 64.8 16 0.327 1.708 1.740 66.0 16 
1951 38 85.5 4 0.082 1.557 1.583 86.9 4 
1952 39 62.3 19 0.388 1.741 1.757 62.9 19 
1953 39 65.4 17 0.347 1.724 1.740 66.0 17 
1954 39 36.5 38 0.776 1.901 1.920 36.9 38 
1955 39 55.8 29 0.592 1.820 1.838 56.4 29 
1956 39 84.4 6 0.122 1.606 1.619 85.1 6 
1957 39 77.6 11 0.224 1.668 1.683 78.3 11 
1958 39 78.7 9 0.184 1.646 1.660 79.4 9 
1959 39 27.9 45 0.918 1.999 2.020 28.2 45 
1960 39 25.5 46 0.939 2.022 2.044 25.8 46 
1961 39 34.0 40 0.816 1.923 1.943 34.4 40 
1962 39 33.4 41 0.837 1.935 1.956 33.8 41 
1963 39 44.5 35 0.714 1.871 1.890 45.0 35 
1964 40 57.8 26 0.531 1.822 1.822 57.8 26 
1965 40 65.1 18 0.367 1.748 1.748 65.1 18 
1966 40 57.8 27 0.551 1.822 1.822 57.8 27 
1967 40 69.6 15 0.306 1.722 1.722 69.6 15 
1968 40 81.8 7 0.143 1.634 1.634 81.8 7 
1969 40 71.9 13 0.265 1.703 1.703 71.9 13 
1970 40 104.8 1 0.020 1.480 1.480 104.8 1 
1971 40 35.1 39 0.796 1.931 1.931 35.1 39 
1972 40 89.6 3 0.061 1.559 1.559 89.6 3 
1973 40 56.2 30 0.612 1.846 1.846 56.2 30 
1974 40 90.0 2 0.041 1.528 1.528 90.0 2 
1975 40 58.6 24 0.490 1.798 1.798 58.6 24 
1976 40 73.9 12 0.245 1.693 1.693 73.9 12 
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Table 4.23(CU). Adjustment of the Rubio Wash Annual Maximum Flood Record for 
Urbanization 

    Iteration 1  

Year Impervious-
ness (%) 

Measured 
Discharge 

(ft3/s) 
Rank Exceedence 

Probability f1 f2 

Adjusted 
Discharge 

(ft3/s) 
Adjusted 

Rank 
1929 18 660 47 0.959 1.560 2.075 878 47 
1930 18 1,690 30 0.612 1.434 1.846 2,176 22 
1931 19 800 46 0.939 1.573 2.044 1,040 44 
1932 20 1,510 34 0.694 1.503 1.881 1,890 32 
1933 20 2,070 20 0.408 1.433 1.765 2,550 13 
1934 21 1,680 31 0.633 1.506 1.855 2,069 24 
1935 21 1,370 35 0.714 1.528 1.890 1,695 34 
1936 22 1,180 40 0.816 1.589 1.956 1,453 36 
1937 23 2,400 14 0.286 1.448 1.713 2,839 8 
1938 25 1,720 29 0.592 1.568 1.838 2,016 28 
1939 26 1,000 43 0.878 1.690 1.984 1,174 42 
1940 28 1,940 26 0.531 1.603 1.814 2,195 20 
1941 29 1,200 38 0.776 1.712 1.931 1,354 37 
1942 30 2,780 7 0.143 1.508 1.648 3,038 5 
1943 31 1,930 27 0.551 1.663 1.822 2,115 23 
1944 33 1,780 28 0.571 1.705 1.830 1,910 31 
1945 34 1,630 32 0.653 1.752 1.863 1,733 33 
1946 34 2,650 10 0.204 1.585 1.672 2,795 10 
1947 35 2,090 19 0.388 1.675 1.757 2,192 21 
1948 36 530 48 0.980 2.027 2.123 555 48 
1949 37 1,060 42 0.857 1.907 1.969 1,094 43 
1950 38 2,290 17 0.347 1.708 1.740 2,333 16 
1951 38 3,020 4 0.082 1.557 1.583 3,070 4 
1952 39 2,200 18 0.367 1.732 1.748 2,220 19 
1953 39 2,310 15 0.306 1.706 1.722 2,332 17 
1954 39 1,290 36 0.735 1.881 1.900 1,303 38 
1955 39 1,970 25 0.510 1.788 1.806 1,990 29 
1956 39 2,980 5 0.102 1.589 1.602 3,004 6 
1957 39 2,740 9 0.184 1.646 1.660 2,763 11 
1958 39 2,780 8 0.163 1.620 1.634 2,804 9 
1959 39 990 44 0.898 1.979 2.001 1,001 45 
1960 39 900 45 0.918 1.999 2.020 909 46 
1961 39 1,200 39 0.796 1.911 1.931 1,213 40 
1962 39 1,180 41 0.837 1.935 1.956 1,193 41 
1963 39 1,570 33 0.673 1.853 1.872 1,586 35 
1964 40 2,040 22 0.449 1.781 1.781 2,040 27 
1965 40 2,300 16 0.327 1.731 1.731 2,300 18 
1966 40 2,040 23 0.469 1.790 1.790 2,040 26 
1967 40 2,460 13 0.265 1.703 1.703 2,460 15 
1968 40 2,890 6 0.122 1.619 1.619 2,890 7 
1969 40 2,540 12 0.245 1.693 1.693 2,540 14 
1970 40 3,700 1 0.020 1.480 1.480 3,700 1 
1971 40 1,240 37 0.755 1.910 1.910 1,240 39 
1972 40 3,160 3 0.061 1.559 1.559 3,160 3 
1973 40 1,980 24 0.490 1.798 1.798 1,980 30 
1974 40 3,180 2 0.041 1.528 1.528 3,180 2 
1975 40 2,070 21 0.429 1.773 1.773 2,070 25 
1976 40 2,610 11 0.224 1.683 1.683 2,610 12 
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Table 4.23(CU). Adjustment of the Rubio Wash Annual Maximum Flood Record for 
Urbanization  (cont'd) 

    Iteration 2  

Year Impervious-
ness (%) 

Measured 
Discharge 

(ft3/s) 
Adjusted 

Rank 
Adjusted 

Exceedence 
Probability 

f1 f2 
Adjusted 

Discharge 
(ft3/s) 

Adjusted 
Rank 

1929 18 660 47 0.959 1.560 2.075 878 47 
1930 18 1,690 22 0.449 1.399 1.781 2,151 22 
1931 19 800 44 0.898 1.548 2.001 1,034 44 
1932 20 1,510 32 0.653 1.493 1.863 1,884 32 
1933 20 2,070 13 0.265 1.395 1.703 2,527 14 
1934 21 1,680 24 0.490 1.475 1.806 2,057 25 
1935 21 1,370 34 0.694 1.522 1.881 1,693 34 
1936 22 1,180 36 0.735 1.553 1.900 1,444 36 
1937 23 2,400 8 0.163 1.405 1.648 2,815 8 
1938 25 1,720 28 0.571 1.562 1.830 2,015 28 
1939 26 1,000 42 0.857 1.680 1.969 1,172 42 
1940 28 1,940 20 0.408 1.573 1.773 2,187 21 
1941 29 1,200 37 0.755 1.695 1.910 1,352 37 
1942 30 2,780 5 0.102 1.472 1.602 3,026 5 
1943 31 1,930 23 0.469 1.637 1.790 2,110 23 
1944 33 1,780 31 0.633 1.726 1.855 1,913 31 
1945 34 1,630 33 0.673 1.760 1.872 1,734 33 
1946 34 2,650 10 0.204 1.585 1.672 2,795 10 
1947 35 2,090 21 0.429 1.690 1.773 2,193 20 
1948 36 530 48 0.980 2.027 2.123 555 48 
1949 37 1,060 43 0.878 1.921 1.984 1,095 43 
1950 38 2,290 16 0.327 1.708 1.740 2,333 16 
1951 38 3,020 4 0.082 1.557 1.583 3,070 4 
1952 39 2,200 19 0.388 1.741 1.757 2,220 19 
1953 39 2,310 17 0.347 1.724 1.740 2,331 17 
1954 39 1,290 38 0.776 1.901 1.920 1,303 38 
1955 39 1,970 29 0.592 1.820 1.838 1,989 29 
1956 39 2,980 6 0.122 1.606 1.619 3,004 6 
1957 39 2,740 11 0.224 1.668 1.683 2,765 11 
1958 39 2,780 9 0.184 1.646 1.660 2,804 9 
1959 39 990 45 0.918 1.999 2.020 1,000 45 
1960 39 900 46 0.939 2.022 2.044 910 46 
1961 39 1,200 40 0.816 1.923 1.943 1,212 40 
1962 39 1,180 41 0.837 1.935 1.956 1,193 41 
1963 39 1,570 35 0.714 1.871 1.890 1,586 35 
1964 40 2,040 27 0.551 1.822 1.822 2,040 26 
1965 40 2,300 18 0.367 1.748 1.748 2,300 18 
1966 40 2,040 26 0.531 1.822 1.822 2,040 27 
1967 40 2,460 15 0.306 1.722 1.722 2,460 15 
1968 40 2,890 7 0.143 1.634 1.634 2,890 7 
1969 40 2,540 14 0.286 1.713 1.713 2,540 13 
1970 40 3,700 1 0.020 1.480 1.480 3,700 1 
1971 40 1,240 39 0.796 1.931 1.931 1,240 39 
1972 40 3,160 3 0.061 1.559 1.559 3,160 3 
1973 40 1,980 30 0.612 1.846 1.846 1,980 30 
1974 40 3,180 2 0.041 1.528 1.528 3,180 2 
1975 40 2,070 25 0.510 1.806 1.806 2,070 24 
1976 40 2,610 12 0.245 1.693 1.693 2,610 12 
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Table 4.23(CU)  Adjustment of the Rubio Wash Annual Maximum Flood Record for 
Urbanization  (cont'd) 

    Iteration 3  

Year Impervious-
ness (%) 

Measured 
Discharge 

(ft3/s) 

Adjusted 
Rank-

iteration 
2 

Adjusted 
Exceedence 
Probability 

f1 f2 

Adjusted 
Discharge 

(ft3/s) 

Adjusted 
Rank-

iteration 
3 

1929 18 660 47 0.959 1.560 2.075 878 47 
1930 18 1,690 22 0.449 1.399 1.781 2,151 22 
1931 19 800 44 0.898 1.548 2.001 1,034 44 
1932 20 1,510 32 0.653 1.493 1.863 1,884 32 
1933 20 2,070 14 0.286 1.401 1.713 2,531 14 
1934 21 1,680 25 0.510 1.475 1.806 2,057 25 
1935 21 1,370 34 0.694 1.522 1.881 1,693 34 
1936 22 1,180 36 0.735 1.553 1.900 1,444 36 
1937 23 2,400 8 0.163 1.405 1.648 2,815 8 
1938 25 1,720 28 0.571 1.562 1.830 2,015 28 
1939 26 1,000 42 0.857 1.680 1.969 1,172 42 
1940 28 1,940 21 0.429 1.573 1.773 2,187 21 
1941 29 1,200 37 0.755 1.695 1.910 1,352 37 
1942 30 2,780 5 0.102 1.472 1.602 3,026 5 
1943 31 1,930 23 0.469 1.637 1.790 2,110 23 
1944 33 1,780 31 0.633 1.726 1.855 1,913 31 
1945 34 1,630 33 0.673 1.760 1.872 1,734 33 
1946 34 2,650 10 0.204 1.585 1.672 2,795 10 
1947 35 2,090 20 0.408 1.683 1.765 2,192 20 
1948 36 530 48 0.980 2.027 2.123 555 48 
1949 37 1,060 43 0.878 1.921 1.984 1,095 43 
1950 38 2,290 16 0.327 1.708 1.740 2,333 16 
1951 38 3,020 4 0.082 1.557 1.583 3,070 4 
1952 39 2,200 19 0.388 1.741 1.757 2,220 19 
1953 39 2,310 17 0.347 1.724 1.740 2,331 17 
1954 39 1,290 38 0.776 1.901 1.920 1,303 38 
1955 39 1,970 29 0.592 1.820 1.838 1,989 29 
1956 39 2,980 6 0.122 1.606 1.619 3,004 6 
1957 39 2,740 11 0.224 1.668 1.683 2,765 11 
1958 39 2,780 9 0.184 1.646 1.660 2,804 9 
1959 39 990 45 0.918 1.999 2.020 1,000 45 
1960 39 900 46 0.939 2.022 2.044 910 46 
1961 39 1,200 40 0.816 1.923 1.943 1,212 40 
1962 39 1,180 41 0.837 1.935 1.956 1,193 41 
1963 39 1,570 35 0.714 1.871 1.890 1,586 35 
1964 40 2,040 26 0.531 1.822 1.822 2,040 26 
1965 40 2,300 18 0.367 1.748 1.748 2,300 18 
1966 40 2,040 27 0.551 1.822 1.822 2,040 27 
1967 40 2,460 15 0.306 1.722 1.722 2,460 15 
1968 40 2,890 7 0.143 1.634 1.634 2,890 7 
1969 40 2,540 13 0.265 1.703 1.703 2,540 13 
1970 40 3,700 1 0.020 1.480 1.480 3,700 1 
1971 40 1,240 39 0.796 1.931 1.931 1,240 39 
1972 40 3,160 3 0.061 1.559 1.559 3,160 3 
1973 40 1,980 30 0.612 1.846 1.846 1,980 30 
1974 40 3,180 2 0.041 1.528 1.528 3,180 2 
1975 40 2,070 24 0.490 1.798 1.798 2,070 24 
1976 40 2,610 12 0.245 1.693 1.693 2,610 12 
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Table 4.24(SI). Computed Discharges for Log-Pearson Type III (LP3) with Generalized 
Skew for Measured Series and Series Adjusted to 40 Percent Imperviousness 

(1) (2) (3) (4) (5) 
Discharges based on:

Return 
period 
(yrs) 

LP3 deviate, K, 
for g = -0.45 

Measured 
series(m3/s) 

Adjusted 
series (m3/s)

Increase 
(%) 

2 0.07476 52 56 8 
5 0.85580 74 77 4 

10 1.22366 87 89 2 
25 1.58657 102 104 2 
50 1.80538 112 114 2 

100 1.99202 121 123 2 
 
(3)   Q = 101.704 + 0.191 K 
 
(4)   Q = 101.732 + 0.179K 

 
Table 4.24(CU). Computed Discharges for Log-Pearson Type III (LP3) with Generalized 

Skew for Measured Series and Series Adjusted to 40 Percent Imperviousness 
 

(1) (2) (3) (4) (5) 
Discharges based on:  Return 

period 
(yrs) 

LP3 deviate, K, 
for G = -0.45 

Measured 
series (ft3/s) 

Adjusted  
series (ft3/s)

Increase 
(%) 

2 0.07476 1,850 1,960 6 
5 0.85580 2,600 2,710 4 

10 1.22366 3,060 3,150 3 
25 1.58657 3,590 3,650 2 
50 1.80538 3,950 3,990 1 

100 1.99202 4,290 4,310 0 
 
(3)   Q = 103.252 + 0.191 K 
 
(4)   Q = 103.280 + 0.179K 

 

4.5 PEAK FLOW TRANSPOSITION 
Gaged flow data may be applied at design locations near, but not coincident with, the gage 
location using peak flow transposition. Peak flow transposition is the process of adjusting the 
peak flow determined at the gage to a downstream or upstream location. Peak flow 
transposition may also be accomplished if the design location is between two gages through an 
interpolation process. 
 
The design location should be located on the same stream channel near the gage with no major 
tributaries draining to the channel in the intervening reach. The definition of “near” depends on 
the method applied and the changes in the contributing watershed between the gage and the 
design location. 
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Two methods of peak flow transposition have been commonly applied: the area-ratio method 
and the Sauer method (Sauer, 1973). The area-ratio method is described as: 
 

 
c

g

d
gd A

AQQ 









=   (4.74) 

 
where, 
 Qd = peak flow at the design location 
 Qg = peak flow at the gage location 
 Ad = watershed area at the design location 
 Ag = watershed area at the gage location 
 c = transposition exponent. 
 
Equation 4.74 is limited to design locations with drainage areas within 25 percent of the gage 
drainage area. The transposition exponent is frequently taken as the exponent for watershed 
area in an applicable peak flow regression equation for the site and is generally less than 1. 
(See Chapter 5 for more information on peak flow regression equations.) 
 
In an evaluation by McCuen and Levy (2000), Sauer’s method performed slightly better than the 
area-ratio method when tested on data from seven states for the 10- and 100-year events. 
Sauer’s method is based first on computing a weighted discharge at the gage from the 
log-Pearson Type III analysis of the gage record and the regression equation estimate at the 
gage location. Then, Sauer uses the gage drainage area, the design location drainage area, the 
weighted gage discharge, and regression equation estimates at the gage and design locations 
to determine the appropriate flow at the design location. More detailed descriptions of Sauer’s 
method are found in Sauer (1973) and McCuen and Levy (2000). 

4.6 RISK ASSESSMENT 
A measured flood record is the result of rainfall events that are considered randomly distributed. 
As such, the same rainfall record will not repeat itself and so future floods will be different from 
past floods. However, if the watershed remains unchanged, future floods are expected to be 
from the same population as past floods and, thus, have the same characteristics. The variation 
of future floods from past floods is referred to as sampling uncertainty. 
 
Even if the true or correct probability distribution and the correct parameter values to use in 
computing a flood frequency curve were known, there is no certainty about the occurrence of 
floods over the design life of an engineering structure. A culvert might be designed to pass the 
10-year flood (i.e., the flood having an exceedence probability of 0.1), but over any period of 10 
years, the capacity may be reached as many as 10 times or not at all. A coffer dam constructed 
to withstand up to the 50-year flood may be exceeded shortly after being constructed, even 
though the dam will only be in place for 1 year. These are chance occurrences that are 
independent of the lack of knowledge of the true probability distribution. That is, the risk would 
occur even if we knew the true population of floods. Such risk of failure, or design uncertainty, 
can be estimated using the concept of binomial risk. 
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4.6.1 Binomial Distribution 
The binomial distribution is used to define probabilities of discrete events; it is applicable to 
random variables that satisfy the following four assumptions: 
 
1. There are n occurrences, or trials, of the random variable. 
 
2. The n trials are independent. 
 
3. There are only two possible outcomes for each trial. 
 
4. The probability of each outcome is constant from trial to trial. 
 
The probabilities of occurrence of any random variable satisfying these four assumptions can be 
computed using the binomial distribution. For example, if the random variable is defined as the 
annual occurrence or nonoccurrence of a flood of a specified magnitude, the binomial 
distribution is applicable. There are only two possible outcomes:  the flood either occurs or does 
not occur. For the design life of a project of n years, there will be n possible occurrences and the 
n occurrences are independent of each other (i.e., flooding this year is independent of flooding 
in other years, and the probability remains constant from year to year). 
 
Two outcomes, denoted as A and B, have the probability of A occurring equal to p and the 
probability of B occurring equal to (1 - p), which is denoted as q (i.e., q = 1 - p). If x is the 
number of occurrences of A, B occurs (n - x) times in n trials. One possible sequence of x 
occurrences of A and n - x occurrences of B would be: 
 

A,A,A,…,A,B,B,…,B 
 
Since the trials are independent, the probability of this sequence is the product of the 
probabilities of the n outcomes: 
 

p)(1  p)p)(1 (1 p ppp −⋅⋅⋅−−⋅⋅⋅  
 
which is equal to: 

 qp = ) p (1p x nxx nx −−−  (4.75) 
 

There are many other possible sequences x occurrences of A and n - x occurrences of B, e.g.,  
 

A,A,A,…,A,B,A,B,B,B,…,B 
 
It would be easy to show that the probability of this sequence occurring is also given by 
Equation 4.75. In fact, any sequence involving x occurrences of A and (n - x) occurrences of B 
would have the probability given by Equation 4.75. Thus it is only necessary to determine how 
many different sequences of x occurrences of A and (n - x) occurrences of B are possible. It can 
be shown that the number of occurrences is: 

 
!)xn(!x

!n
−

 (4.76) 

 
where n! is read "n factorial" and equals: 
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)1)(2()2n)(1n(n! = n ⋅⋅⋅−−  
 
Computationally, the value of Equation 4.76 can be found from 
 

!x
)1xn()1n(n +−⋅⋅⋅−

 

 
The quantity given by Equation 4.76 is computed so frequently that it is often abbreviated by 









x
n

 and called the binomial coefficient. It represents the number of ways that sequences 

involving events A and B can occur with x occurrences of A and (n - x) occurrences of B. 
Combining Equations 4.76 and 4.77 gives the probability of getting exactly x occurrences of A in 
n trials, given that the probability of event A occurring on any trial is p: 
 

 ( ) ( ) n...,2,1,0, = x for     p 1p 
x
n

 = pn,x;b xnx −−







 (4.77) 

 
This is a binomial probability, and the probabilities defined by Equation 4.76 represent the 
distribution of binomial probabilities. It is denoted as b(x; n, p), which is read "the probability of 
getting exactly x occurrences of a random variable in n trials when the probability of the event 
occurring on any one trial is p." 
 
For example, if n equals 4 and x equals 2, Equation 4.76 would suggest six possible sequences: 
 

 6 = 
1)(2)(1)(2)(
1)(4)(3)(2)( = 

!2) - 4(!2
!4

 (4.78) 

 
The six possible sequences are (AABB), (ABBA), (ABAB), (BAAB), (BABA), and (BBAA). Thus 
if the probability of A occurring on any one trial is 0.3, then the probability of exactly two 
occurrences in four trials is: 

 2646.0= )3.01()3.0(
2
4

 = )3.0,4;2(b 242 −−







 

 
Similarly, if p equals 0.5, the probability of getting exactly two occurrences of event A would be 
 

 375.0= )5.01()5.0(
2
4

 = )5.0,4;2(b 242 −−







 

 
It is easy to show that for four trials there is only one way of getting either zero or four 
occurrences of A, there are four ways of getting either one or three occurrences of A, and there 
are six ways of getting two occurrences of A. Thus with a total of 16 possible outcomes, the 
value given by Equation 4.78 for the number of ways of getting two occurrences divided by the 
total of 16 possible outcomes supports the computed probability of 0.375.  
 
Example 4.13. A coffer dam is to be built on a river bank so that a bridge pier can be built. The 
dam is designed to prevent flow from the river from interfering with the construction of the pier. 
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The cost of the dam is related to the height of the dam; as the height increases, the cost 
increases. But as the height is increased, the potential for flood damage decreases. The level of 
flow in the stream varies weekly and can be considered as a random variable. However, the 
design engineer is interested only in two states, the overtopping of the dam during a 1-
workweek period or the non-overtopping. If construction of the pier is to require 2 years for 
completion, the time period consists of 104 independent "trials."  If the probability of the flood 
that would cause overtopping remains constant (p), the problem satisfies the four assumptions 
required to use the binomial distribution for computing probabilities.  
 
If x is defined as an occurrence of overtopping and the height of the dam is such that the 
probability of overtopping during any 1-week period is 0.05, then for a 104-week period (n = 
104), the probability that the dam will not be overtopped (x = 0) is computed using Equation 
4.77: 
 

 0048.0 =  )(0.95)(0.05
0

104
 = 0.05)104,(0;b = )pingno overtop(p 1040









 

 
The probability of exactly one overtopping is 
 

 ( ) ( ) ( ) 0264.0 = 95.005.0
1

104
 = 05.0,104;1b 1031









 

 
Thus the probability of more than one overtopping is: 
 
 ( ) ( ) 9688.0 = 05.0,104;1  b05.0,104;0 b 1 −−  
 
The probability of the dam not being overtopped can be increased by increasing the height of 
the dam. If the height of the dam is increased so that the probability of overtopping in a 1-week 
period is decreased to 0.02, the probability of no overtoppings increases to 

 

 ( ) ( ) ( ) ( ) 0.1223 = 0.980.02
0

104
 =0.02104,0;b = gsovertoppin nop 1040









 

 
Thus the probability of no overtopping during the 104-week period increased 25 times when the 
probability of overtopping during 1 week was decreased from 0.05 to 0.02.  

4.6.2 Flood Risk 
The probability of nonexceedence of QA given in Equation 4.4 can now be written in terms of the 
return period as: 

 ( ) ( )
T
11 = QP -1 = Qnot P

r
ArAr −  (4.79) 

 
By expanding Equation 4.6, the probability that QA  will not be exceeded for n successive years 
is given by: 

 
n

r

n
ArArArAr T

11)]Qnot(P[)Qnot(P)Qnot(P)Qnot(P 







−==⋅⋅⋅  (4.80) 
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Risk, R, is defined as the probability that Q1 will be exceeded at least once in n years:  
 

 
n

r

n
Ar

T
111 = )]Qnot(P[1R = 







 −−−  (4.81) 

 
Equation 4.81 was used for the calculations of Table 4.25, which gives the risk of failure as a 
function of the project design life, n, and the design return period, Tr.  
 
Example 4.14. The use of Equation 4.81 or Table 4.25 is illustrated by the following example. 
What is the risk that the design flood will be equaled or exceeded in the first two years on a 
frontage road culvert designed for a 10-year flood?  From Equation 4.81, the risk is calculated 
as:  
 

 19.0 = 
10
111=  

T
111R = 

2

r

n





 −−







 −−  

 
In other words, there is about a 20 percent chance that this structure will be subjected to a 
10-year flood in the first 2 years of its life. 
 

Table 4.25. Risk of Failure(R) as a Function of Project Life (n)  
and Return Period (Tr) 

 
 

 
Return Period (Tr)  

n 
 

  2    
 

  5  
 

  10  
 

  25 
 

  50 
 

 100  
 

  1 
 
0.500 

 
0.200

 
0.100

 
0.040

 
0.020

 
0.010  

  3 
 
0.875 

 
0.488

 
0.271

 
0.115

 
0.059

 
0.030  

  5 
 
0.969 

 
0.672

 
0.410

 
0.185

 
0.096

 
0.049  

 10 
 
0.999 

 
0.893

 
0.651

 
0.335

 
0.183

 
0.096  

 20 
 

 
 
0.988

 
0.878

 
0.558

 
0.332

 
0.182  

 50 
 

 
 

 
 
0.995

 
0.870

 
0.636

 
0.395  

100 
 

 
 

 
 

 
 
0.983

 
0.867

 
0.634 




